Вопрос задан 28.10.2023 в 13:26. Предмет Геометрия. Спрашивает Макаров Павлик.

2. Основание равнобедренного треугольника равно 70см, а боковая сторона - 37см. Найдите

высотутреугольника, проведенную к его основанию.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алипханов Ахмед.

Треугольник, образованный высотой, боковой стороной и половиной основания (т.к. в равнобедренном треугольнике высота это еще и медиана) - прямоугольный, к нему применима теорема Пифагора:

h²=37²-35²=144

h=12

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Высота треугольника, проведенная к его основанию, разделяет основание на две равные части, которые являются основаниями двух прямоугольных треугольников.

По определению равнобедренного треугольника, боковая сторона (37 см) является одновременно и основанием одного из прямоугольных треугольников, и одной из его равных сторон. Пусть высота треугольника, проведенная к его основанию, равна h. Тогда основание другого прямоугольного треугольника также будет равно 37 см.

Рассмотрим один из прямоугольных треугольников. Он имеет гипотенузу (боковую сторону равнобедренного треугольника) длиной 37 см и катет длиной h/2. Согласно теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы:

(h/2)^2 + h^2 = 37^2.

(h^2 + 4h^2)/4 = 37^2.

5h^2 = 4 * 37^2.

h^2 = (4 * 37^2) / 5.

h = sqrt((4 * 37^2) / 5).

h ≈ 55.07 см.

Таким образом, высота треугольника, проведенная к его основанию, составляет примерно 55.07 см.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос