Вопрос задан 24.09.2023 в 05:45. Предмет Геометрия. Спрашивает Шкипер Андрей.

В равностороннюю трапецию вписан круг, разделяющий боковую сторону на отрезки 2см и 8 см. Найдите

площадь трапеции.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гриневич Алёна.

Ответ:

Площадь трапеции будет равна =(8+2)/2*4=5*4=20

Объяснение:

В равностороннюю трапецию вписан круг, значит сумма оснований равна сумме боковых сторон

Одна сторона трапеции будет  =(2+8)/2=10/2=5

Полуразность оснований трапеции=(8-2)/2=6/2=3

Высота трапеции= под корнем√(5^2-3^2)=под корнем√(25-9)=v16=4

Радиус вписанной окружности=половине высоты=4/2=2

Значит площадь трапеции будет равна =(8+2)/2*4=5*4=20

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать следующие шаги:

  1. Разберемся с радиусом вписанного круга. Круг делит боковую сторону трапеции на два отрезка: 2 см и 8 см. Поскольку трапеция равносторонняя, то это означает, что вершины трапеции соединены радиусом круга, который также является медианой трапеции.

  2. Так как медиана трапеции делит ее на два равных треугольника, то мы можем рассмотреть один из таких треугольников. В этом треугольнике одна из сторон равна половине основания трапеции (2 см / 2 = 1 см), а другая сторона равна радиусу вписанного круга. Обозначим радиус как "r".

  3. Мы можем использовать теорему Пифагора, чтобы найти значение "r". Таким образом:

    (1 см)^2 + (r)^2 = (8 см)^2

    1 + r^2 = 64

    r^2 = 64 - 1

    r^2 = 63

    r = √63

  4. Теперь у нас есть радиус вписанного круга. Мы можем найти площадь одного из треугольников и затем умножить ее на 2, чтобы получить площадь всей трапеции.

  5. Площадь треугольника можно найти с использованием формулы для площади треугольника: S = (основание * высота) / 2.

    S = (2 см * √63 см) / 2

    S = √63 см^2

  6. Теперь найдем площадь всей трапеции:

    S_трапеции = 2 * S_треугольника

    S_трапеции = 2 * √63 см^2

Таким образом, площадь равносторонней трапеции равна 2 * √63 квадратных сантиметра.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос