Вопрос задан 20.07.2023 в 09:49. Предмет Геометрия. Спрашивает Курмаева Даша.

Y=x+1/x-3 ИССЛЕДОВАТЬ ФУНКЦИЮ

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кожевникова Виктория.

Найдем область определения выражения, отыскав промежутки, на которых оно определено.

(

;

3

)

(

3

;

)

(-∞;3)∪(3;∞)

{

x

|

x

3

}


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To investigate the function y=x+1x3y = \frac{x+1}{x-3}, we'll examine its properties, such as domain, asymptotes, intercepts, symmetry, and behavior as xx approaches certain values.

  1. Domain: The function is defined for all real numbers except when the denominator is zero (x3=0x - 3 = 0). So, the domain is all real numbers except x3x \neq 3.

  2. Vertical Asymptote: The vertical asymptote occurs where the denominator becomes zero. Thus, there is a vertical asymptote at x=3x = 3.

  3. Horizontal Asymptote: To determine the horizontal asymptote, we'll check the behavior of the function as xx approaches positive and negative infinity.

    As xx \to \infty, both the numerator and denominator have the highest power of xx as xx, so we can apply the rule of "Divide the coefficients of the highest power of xx". Thus, the horizontal asymptote is y=11=1y = \frac{1}{1} = 1 as xx \to \infty.

    As xx \to -\infty, again both the numerator and denominator have the highest power of xx as xx, so the horizontal asymptote remains y=1y = 1 as xx \to -\infty.

  4. Intercepts:

    • x-intercept: To find the x-intercept, set yy to zero and solve for xx: 0=x+1x30 = \frac{x + 1}{x - 3}. Since the fraction is zero only when the numerator is zero, we have x+1=0x=1x + 1 = 0 \Rightarrow x = -1. So the x-intercept is (1,0)(-1, 0).
    • y-intercept: To find the y-intercept, set xx to zero: y=0+103=13y = \frac{0 + 1}{0 - 3} = \frac{1}{-3}. So the y-intercept is (0,1/3)(0, -1/3).
  5. Symmetry: To check for symmetry, let's evaluate the function at x-x: y(x)=x+1x3y(-x) = \frac{-x + 1}{-x - 3}. It doesn't match the original function y=x+1x3y = \frac{x+1}{x-3}. Hence, the function is not symmetric about the origin.

  6. Vertical Shift: The function has a vertical shift of 1 unit up (compared to y=xx3y = \frac{x}{x-3}) due to the constant term of 11 in the numerator.

  7. Critical Points: To find the critical points, we'll look for values of xx where the derivative of the function is zero or undefined. The derivative of yy with respect to xx is:

    dydx=(x3)(x+1)(x3)2=4(x3)2\frac{dy}{dx} = \frac{(x-3) - (x+1)}{(x-3)^2} = \frac{-4}{(x-3)^2}.

    The derivative is never zero since the numerator is always -4. However, it is undefined when the denominator is zero (i.e., when x=3x = 3). But we know that the function has a vertical asymptote at x=3x = 3, so it never crosses the vertical asymptote, and hence, there are no critical points.

  8. Increasing/Decreasing Intervals: Since the derivative is always negative (since the numerator is negative and the denominator is squared), the function is decreasing for all xx except where it is undefined (at x=3x = 3).

Now, armed with this information, you can sketch the graph of the function. The graph will approach the vertical asymptote x=3x = 3 without crossing it. As xx approaches infinity, the graph will approach the horizontal asymptote y=1y = 1. As xx approaches negative infinity, the graph will also approach y=1y = 1. The graph will have an x-intercept at (1,0)(-1, 0) and a y-intercept at (0,1/3)(0, -1/3). It will be a decreasing function with a vertical shift of 1 unit up compared to the function y=xx3y = \frac{x}{x-3}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос