Вопрос задан 12.07.2023 в 07:23. Предмет Геометрия. Спрашивает Приловский Саня.

Диоганаль AC паралелограмма ABCD образуют с его стороеами углы,равные 20°и30°.Найдите больший угол

паралелограмма.Ответ в градусах​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Pyasetskiy Kirill.

Ответ:

130

Объяснение

Угол DAB=DAB+CAB=20=30=50

BAD=ADC=180

ADC=180-50=130

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Паралелограмм ABCD:

css
A--------B \ / \ / \ / C--------D

Диагонали AC и BD разделяют паралелограмм на четыре треугольника: ACD, BCD, ABC и ABD.

У нас есть информация о двух углах: угол ACD равен 20°, а угол BCD равен 30°.

Заметим, что угол ABC и угол ABD дополняются до 180° (поскольку это внутренние углы паралелограмма, образующие прямую линию). То есть, если угол ABC равен x, то угол ABD будет 180° - x.

Теперь мы можем записать уравнение:

ACD + BCD + ABC + ABD = 360°

Подставляем известные значения:

20° + 30° + x + (180° - x) = 360°

Решаем уравнение:

50° + 180° = 360°

230° = 360°

Таким образом, угол ABC равен 360° - 230° = 130°.

Следовательно, больший угол паралелограмма равен 130°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос