Вопрос задан 07.07.2023 в 03:09. Предмет Геометрия. Спрашивает Завгородня Танюша.

В окружности с радиусом 8см проведена хорда длиной 8см. Чему равны длины стягиваемых ею дуг?

Найти площадь полученного МЕНЬШЕГО сегмента.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецов Константин.

Ответ:

ответ во вложений надеюсь правильно


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала давайте рассмотрим ситуацию. У нас есть окружность с радиусом 8 см, и проведена хорда длиной 8 см. Это означает, что эта хорда является диаметром окружности.

Сначала определим, какие дуги она стягивает. Поскольку хорда является диаметром, она разделяет окружность на две равные дуги, каждая из которых составляет половину окружности. Таким образом, каждая стягиваемая дуга равна половине длины окружности.

Длина окружности вычисляется по формуле: длина = 2 * π * радиус.

В данном случае, радиус (r) = 8 см.

Длина окружности = 2 * π * 8 см ≈ 50.27 см.

Таким образом, длина каждой стягиваемой дуги составляет половину от 50.27 см, то есть примерно 25.14 см.

Для нахождения площади меньшего сегмента можно воспользоваться следующей формулой:

Площадь сегмента = (θ - sin(θ)) * r² / 2,

где θ - центральный угол, измеренный в радианах, а r - радиус окружности.

В данном случае, у нас есть две равные стягиваемые дуги, каждая из которых составляет половину окружности. Таким образом, центральный угол для каждой дуги равен π радиан (180 градусов).

Подставляя значения в формулу:

Площадь сегмента = (π - sin(π)) * 8² / 2, Площадь сегмента = (π - 0) * 64 / 2, Площадь сегмента = 32π кв.см.

Полученная площадь меньшего сегмента равна 32π кв.см, что примерно равно 100.53 кв.см (если использовать значение π ≈ 3.14159).

Пожалуйста, обратите внимание, что значения могут быть округлены для удобства вычислений.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос