
Sin^2x-5sinx*cosx+4cos^2x=0


Ответы на вопрос

Sin^2x + 5 sinx cosx + 4cos^2x=0 | : Cos²x
tg²x + 5tgx + 4 = 0
Замена tgx = t
t² + 5t +4 = 0
По дискриминанту
D=25-4*1*4=25-16=9=3^2
x1=-5+3/2=4 x2=-5-3/2=-4
а) tgx = -1 б)tgx = -4
x = -π/4 + πk , k ∈Z x = -arctg 4 + πn , n ∈Z



To solve the equation sin^2(x) - 5sin(x)cos(x) + 4cos^2(x) = 0, we can use some trigonometric identities to simplify it.
Let's start by using the Pythagorean identity sin^2(x) + cos^2(x) = 1. Rearranging this equation, we get:
cos^2(x) = 1 - sin^2(x)
Substituting this expression into the original equation, we have:
sin^2(x) - 5sin(x)cos(x) + 4(1 - sin^2(x)) = 0
Expanding and rearranging the equation, we get:
sin^2(x) - 5sin(x)cos(x) + 4 - 4sin^2(x) = 0
Combining like terms, we have:
-3sin^2(x) - 5sin(x)cos(x) + 4 = 0
Now, let's use the double-angle identity for sine:
sin(2x) = 2sin(x)cos(x)
We can rewrite the equation as:
-3sin^2(x) - 5sin(x)cos(x) + 4 = -3sin^2(x) - 5(1/2)sin(2x) + 4 = 0
Now, let's substitute sin(2x) with 2sin(x)cos(x):
-3sin^2(x) - (5/2)sin(2x) + 4 = -3sin^2(x) - (5/2)(2sin(x)cos(x)) + 4 = 0
Simplifying further, we have:
-3sin^2(x) - 5sin(x)cos(x) + 4 = -3sin^2(x) - 5sin(x)cos(x) + 4 = 0
Now, we have a quadratic equation in terms of sin(x). Let's solve it using factoring or the quadratic formula.
To simplify the equation, let's divide it by -1:
3sin^2(x) + 5sin(x)cos(x) - 4 = 0
Now, we can factor the quadratic equation:
(3sin(x) - 4)(sin(x) + 1) = 0
Setting each factor equal to zero, we have:
3sin(x) - 4 = 0 or sin(x) + 1 = 0
Solving the first equation, we get:
3sin(x) = 4
sin(x) = 4/3
To solve for x, take the inverse sine (arcsin) of both sides:
x = arcsin(4/3)
However, the value arcsin(4/3) is not defined in the range of -1 to 1, so there are no real solutions for x in the first equation.
Now, let's solve the second equation:
sin(x) + 1 = 0
sin(x) = -1
The solutions for x in this case are:
x = arcsin(-1) = -π/2 + 2πn or x = π/2 + 2πn
where n is an integer.
Therefore, the solutions to the equation sin^2(x) - 5sin(x)cos(x) + 4cos^2(x) = 0 are:
x = -π/2 + 2πn or x = π/2 + 2πn
where n is an integer.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili