Вопрос задан 27.09.2023 в 10:10. Предмет Геометрия. Спрашивает Бояринов Кирилл.

Сторони трикутника дорівнюють a,b та c , і задовольняють умову a2 - bc = ( b-c)2 знайдіть градусну

міру кута, протилежного до сторони a ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бездушный Бодя.

Ответ:

Фото

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Ми можемо використати косинусне правило для знаходження кутів у трикутнику.

Косинусне правило виглядає наступним чином:

a2=b2+c22bccos(A)a^2 = b^2 + c^2 - 2bc \cdot \cos(A)

Дано, що a2bc=(bc)2a^2 - bc = (b - c)^2, тобто:

a2bc=b22bc+c2a^2 - bc = b^2 - 2bc + c^2

Тепер можемо використати це для знаходження косинуса кута AA:

2bccos(A)=a2b2c22bc \cdot \cos(A) = a^2 - b^2 - c^2

cos(A)=a2b2c22bc\cos(A) = \frac{a^2 - b^2 - c^2}{2bc}

Тепер, використовуючи обернену косинус-функцію (arccos), ми можемо знайти величину кута AA:

A=arccos(a2b2c22bc)A = \arccos\left(\frac{a^2 - b^2 - c^2}{2bc}\right)

Це буде градусна міра кута, протилежного до сторони aa.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос