
Проекции катетов прямоугольного треугольника на гипотенузу равны 9см и 4см. Найдите площадь этого
треугольника.

Ответы на вопрос

Ответ:
в прямоугольном тр-ке АВС проведена высота СД из прямого угла на
гипотенузу, высота является средним геометрическим для отрезков гипотенузы или для проекций катетов на гипотенузу:
СД²=AD*DB, CD²=9*4, CD²=36см²; СД=6 см; S=1/2*AB*CD=
1/2*(9+4)*6=39 см².



Пусть у нас есть прямоугольный треугольник ABC, где AB и AC - катеты, BC - гипотенуза. По условию дано, что проекции катетов AB и AC на гипотенузу BC равны 9 см и 4 см соответственно.
Мы можем воспользоваться подобием треугольников, чтобы найти отношение между длинами сторон треугольников. По свойству подобных треугольников:
Подставляя известные значения, получим:
Далее, мы можем воспользоваться теоремой Пифагора для нахождения длины гипотенузы BC:
Подставляя значения проекций катетов, получим:
Теперь возьмем квадратный корень от обеих сторон:
Таким образом, длина гипотенузы BC примерно равна см.
Теперь мы можем найти площадь прямоугольного треугольника через половину произведения катетов:
Площадь
Подставляя значения:
кв. см
Итак, площадь прямоугольного треугольника составляет квадратных сантиметров.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili