Вопрос задан 18.06.2023 в 10:24. Предмет Геометрия. Спрашивает Худолей Наташка.

Найдите площадь (в см. кв.) полной поверхности прямой призмы, высота которой 10 см, а ее основанием

является ромб, диагональ которого 10 см, длина стороны 13 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шевченко Надежда.

Ответ:

760

Объяснение:


0 0
Отвечает Зырянова Александра.

Ответ: 760см²

Объяснение:

Площадь призмы равна:

S=2Sосн+Sб.п.

Sб.п.=Р*h=4ah=4*13*10=520см²

Sосн=(d1*d2)/2

d2=2√a²-(d1/2)²=2*√13²-(10/2)²=24cм

2Sосн=2*(d1*d2)/2=d1*d2=10*24=240cм²

S=520+240=760cм²

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади полной поверхности прямой призмы с высотой 10 см и основанием в виде ромба, у которого диагональ равна 10 см, а длина стороны равна 13 см, можно использовать следующую формулу:

Площадь полной поверхности прямой призмы = 2 * (площадь основания + площадь боковой поверхности)

Нахождение площади основания

Для ромба с диагональю 10 см и длиной стороны 13 см можно использовать следующую формулу для нахождения площади:

Площадь ромба = (диагональ1 * диагональ2) / 2

В данном случае, диагональ1 и диагональ2 равны 10 см, поэтому:

Площадь ромба = (10 * 10) / 2 = 50 см².

Нахождение площади боковой поверхности

Для прямоугольной призмы с высотой 10 см и основанием в виде ромба, площадь боковой поверхности можно найти, умножив периметр основания на высоту призмы.

Периметр ромба можно найти, умножив длину одной стороны на 4:

Периметр ромба = длина стороны * 4 = 13 * 4 = 52 см

Теперь, умножим периметр на высоту:

Площадь боковой поверхности = периметр * высота = 52 * 10 = 520 см².

Нахождение площади полной поверхности

Теперь, используя формулу для нахождения площади полной поверхности прямой призмы, подставим найденные значения:

Площадь полной поверхности прямой призмы = 2 * (площадь основания + площадь боковой поверхности) = 2 * (50 + 520) = 2 * 570 = 1140 см².

Таким образом, площадь полной поверхности прямой призмы равна 1140 см².

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос