
Преобразование графиков тригонометрических функций Построить график: у= 2,5cos 2x;


Ответы на вопрос

Для построения графика функции у = 2,5cos(2x) можно использовать следующие шаги:
Шаг 1: Определение основных характеристик функции
Перед тем, как начать построение графика, давайте определим основные характеристики функции у = 2,5cos(2x):- Амплитуда: Амплитуда функции cos(2x) равна 1, поэтому амплитуда функции у = 2,5cos(2x) равна 2,5. - Период: Период функции cos(2x) равен π/2, поэтому период функции у = 2,5cos(2x) также равен π/2. - Фазовый сдвиг: Функция у = 2,5cos(2x) не имеет фазового сдвига, так как аргумент функции (2x) не имеет дополнительного слагаемого.
Шаг 2: Построение осей координат
Начнем с построения осей координат. Горизонтальная ось будет представлять значения x, а вертикальная ось - значения y.Шаг 3: Построение точек графика
Теперь построим несколько точек графика функции у = 2,5cos(2x). Для этого выберем несколько значений x и найдем соответствующие значения y, используя функцию cos(2x) и амплитуду 2,5.- При x = 0, y = 2,5cos(2*0) = 2,5cos(0) = 2,5. - При x = π/4, y = 2,5cos(2*(π/4)) = 2,5cos(π/2) = 0. - При x = π/2, y = 2,5cos(2*(π/2)) = 2,5cos(π) = -2,5. - При x = 3π/4, y = 2,5cos(2*(3π/4)) = 2,5cos(3π/2) = 0. - При x = π, y = 2,5cos(2*π) = 2,5cos(2π) = 2,5.
Шаг 4: Построение графика
Соединим построенные точки графика функции у = 2,5cos(2x) линией. Полученный график будет иметь форму синусоиды, с амплитудой 2,5 и периодом π/2.Примечание: Предоставленные источники не содержат конкретных графиков для данной функции. Однако, они могут быть полезными для более подробного изучения тригонометрических функций и их преобразований.



Для преобразования графика тригонометрической функции у = 2,5cos(2x) мы можем использовать несколько методов. Один из них - это анализ основных свойств функции и применение соответствующих преобразований.
Основные свойства функции cos(x):
- Амплитуда: амплитуда функции cos(x) равна 1. - Период: период функции cos(x) равен 2π. - Фазовый сдвиг: функция cos(x) имеет фазовый сдвиг влево на π/2.Применение преобразований:
1. Амплитуда: умножаем функцию на коэффициент амплитуды. В данном случае, умножаем на 2,5. 2. Период: делим аргумент функции на коэффициент периода. В данном случае, делим на 2. 3. Фазовый сдвиг: вычитаем фазовый сдвиг из аргумента функции. В данном случае, вычитаем π/2.Преобразованный график:
Таким образом, преобразованный график функции у = 2,5cos(2x) будет иметь следующие характеристики: - Амплитуда: 2,5 - Период: π - Фазовый сдвиг: влево на π/2Примечание: Для более точного построения графика и визуализации результатов, рекомендуется использовать программное обеспечение, такое как Wolfram Mathematica или MATLAB, которые предоставляют инструменты для построения графиков функций.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili