
Найдите сумму первых пяти членов геометрической прогрессии, третий член которой равен 3 , а пятый
27. ПОМОГИТЕ!!

Ответы на вопрос

Calculation of the Sum of the First Five Terms of a Geometric Progression
To find the sum of the first five terms of a geometric progression, we need to know the third term and the fifth term of the progression. In this case, the third term is given as 3 and the fifth term is given as 27.
Let's denote the first term of the geometric progression as a and the common ratio as r. The formula to find the sum of the first n terms of a geometric progression is:
S_n = a * (r^n - 1) / (r - 1)
We can use this formula to find the sum of the first five terms.
Solution
Given: - Third term (a_3) = 3 - Fifth term (a_5) = 27
We can use the formula for the nth term of a geometric progression to find the common ratio (r):
a_n = a * r^(n-1)
Substituting the values of the third term and the fifth term, we get:
a_3 = a * r^(3-1) = 3
a_5 = a * r^(5-1) = 27
Dividing the equation for the fifth term by the equation for the third term, we can eliminate the first term (a):
(a * r^(5-1)) / (a * r^(3-1)) = 27 / 3
Simplifying the equation, we get:
r^2 = 9
Taking the square root of both sides, we find:
r = ±3
Since the common ratio cannot be negative in this case (as it is a geometric progression), we take the positive value:
r = 3
Now that we have the common ratio, we can substitute it into the formula for the sum of the first five terms:
S_5 = a * (r^5 - 1) / (r - 1)
Substituting the values of the common ratio and the fifth term, we get:
27 = a * (3^5 - 1) / (3 - 1)
Simplifying the equation, we find:
27 = a * (243 - 1) / 2
27 = a * 242 / 2
Multiplying both sides by 2 and dividing by 242, we get:
a = 27 * 2 / 242
Simplifying the equation, we find:
a = 27 / 121
Now that we have the first term (a) and the common ratio (r), we can substitute them into the formula for the sum of the first five terms:
S_5 = a * (r^5 - 1) / (r - 1)
Substituting the values, we get:
S_5 = (27 / 121) * (3^5 - 1) / (3 - 1)
Simplifying the equation, we find:
S_5 = (27 / 121) * (243 - 1) / 2
S_5 = (27 / 121) * 242 / 2
S_5 = 27 * 242 / (121 * 2)
S_5 = 13.5
Therefore, the sum of the first five terms of the given geometric progression is 13.5.
Please let me know if you need any further assistance!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili