Вопрос задан 31.08.2020 в 10:36. Предмет Алгебра. Спрашивает Сидоренко Иван.

Найдите сумму первых пяти членов геометрической прогрессии, третий член которой равен 3 , а пятый

27. ПОМОГИТЕ!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Sum of the First Five Terms of a Geometric Progression

To find the sum of the first five terms of a geometric progression, we need to know the third term and the fifth term of the progression. In this case, the third term is given as 3 and the fifth term is given as 27.

Let's denote the first term of the geometric progression as a and the common ratio as r. The formula to find the sum of the first n terms of a geometric progression is:

S_n = a * (r^n - 1) / (r - 1)

We can use this formula to find the sum of the first five terms.

Solution

Given: - Third term (a_3) = 3 - Fifth term (a_5) = 27

We can use the formula for the nth term of a geometric progression to find the common ratio (r):

a_n = a * r^(n-1)

Substituting the values of the third term and the fifth term, we get:

a_3 = a * r^(3-1) = 3

a_5 = a * r^(5-1) = 27

Dividing the equation for the fifth term by the equation for the third term, we can eliminate the first term (a):

(a * r^(5-1)) / (a * r^(3-1)) = 27 / 3

Simplifying the equation, we get:

r^2 = 9

Taking the square root of both sides, we find:

r = ±3

Since the common ratio cannot be negative in this case (as it is a geometric progression), we take the positive value:

r = 3

Now that we have the common ratio, we can substitute it into the formula for the sum of the first five terms:

S_5 = a * (r^5 - 1) / (r - 1)

Substituting the values of the common ratio and the fifth term, we get:

27 = a * (3^5 - 1) / (3 - 1)

Simplifying the equation, we find:

27 = a * (243 - 1) / 2

27 = a * 242 / 2

Multiplying both sides by 2 and dividing by 242, we get:

a = 27 * 2 / 242

Simplifying the equation, we find:

a = 27 / 121

Now that we have the first term (a) and the common ratio (r), we can substitute them into the formula for the sum of the first five terms:

S_5 = a * (r^5 - 1) / (r - 1)

Substituting the values, we get:

S_5 = (27 / 121) * (3^5 - 1) / (3 - 1)

Simplifying the equation, we find:

S_5 = (27 / 121) * (243 - 1) / 2

S_5 = (27 / 121) * 242 / 2

S_5 = 27 * 242 / (121 * 2)

S_5 = 13.5

Therefore, the sum of the first five terms of the given geometric progression is 13.5.

Please let me know if you need any further assistance!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос