
Вопрос задан 10.05.2020 в 14:36.
Предмет Алгебра.
Спрашивает Гродненская Диана.
Решить пожалуйста 4 в степени логарифм по основанию 2 числа х-4 меньше или равно 36.
СРОЧНО!4^log2(x-4)<или=36

Ответы на вопрос

Отвечает Лапин Иван.
ОДЗ: x-4>0 <=> x>4
(2^2)^log_2(x-4)<=36
2^{2*log_2(x-4)}<=36
2^log_2{(x-4)^2}<=36
По свойству получаем, что:
(x-4)^2<=36
(x-4)^2-36<=0
(x-4-6)*(x-4+6)<=0
(x-10)*(x+2)<=0
Решаем неравенство методом интервалов. Находим при каких икс левая часть рпвна нулю:
x-10=0 <=> x=10
x+2=0 <=> x=-2
На числовой оси иксов ставим точки -2 и 10. Знаки на получившихся интервалах: плюс, минус, плюс. Нам нужен минус, значит икс принадлежит отрезку [-2;10].
С учетом ОДЗ x c (4; 10].
(2^2)^log_2(x-4)<=36
2^{2*log_2(x-4)}<=36
2^log_2{(x-4)^2}<=36
По свойству получаем, что:
(x-4)^2<=36
(x-4)^2-36<=0
(x-4-6)*(x-4+6)<=0
(x-10)*(x+2)<=0
Решаем неравенство методом интервалов. Находим при каких икс левая часть рпвна нулю:
x-10=0 <=> x=10
x+2=0 <=> x=-2
На числовой оси иксов ставим точки -2 и 10. Знаки на получившихся интервалах: плюс, минус, плюс. Нам нужен минус, значит икс принадлежит отрезку [-2;10].
С учетом ОДЗ x c (4; 10].



Отвечает Таржуманян Серёжа.
ОДЗ
х - 4 > 0
x > 4
x ∈ ]4; +∞[
(x - 10) * (x + 2)≤ 0
- 2 ≤ x ≤ 10
ОДЗ х >4
Ответ: ]4; 10]
х - 4 > 0
x > 4
x ∈ ]4; +∞[
(x - 10) * (x + 2)≤ 0
- 2 ≤ x ≤ 10
ОДЗ х >4
Ответ: ]4; 10]


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili