
Вопрос задан 31.05.2018 в 16:26.
Предмет Алгебра.
Спрашивает Фіда Сергій.
Целое число при делении на 8 дает в остатке 7. Докажите, что куб этого числа при делении на 8 дает
в остатке 7. Указание: Данное целое число можно представить в виде 8х+7

Ответы на вопрос

Отвечает Антоневич Мария.
Пусть целое число 8х+7 будет, х -неполное частное.
Найдем куб этого числа.
(8х+7)^3=8^3х^3+7^3+3*56х (8х+7).
Пользовались
(а+в)^3=а^3+в^3+3ав (а+в).
Первое слагаемое 8^3х^3делится без остатка на 8.Третьяя слагаемое тоже делится на 8 без остатка.Проверим 7^3=343 при делении на 8 дает остаток 7.
Показали, что куб этого числа при делении на 8 дает остаток 7.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili