
Катер прошёл по течению реки 5 км, а против течения 4 км. Найти скорость катера, если скорость
течения реки 3 км/ч. (решить дробью)

Ответы на вопрос

5/x+3 + 4/x-3 = 1
X не может быть (0;3;-3)
5x-15+4x+12 - x ^(2)-3x+3x+9=0
-x^(2)+9x+6=0/(-1)
x^(2)-9x-6=0
Ответ x = 9×√(24)






Problem Analysis
We are given that a boat traveled downstream for 5 km and upstream for 4 km in a river with a current speed of 3 km/h. We need to find the speed of the boat.Solution
Let's assume the speed of the boat in still water is x km/h.When the boat is traveling downstream, its effective speed is the sum of its speed in still water and the speed of the current. So, the effective speed downstream is (x + 3) km/h.
When the boat is traveling upstream, its effective speed is the difference between its speed in still water and the speed of the current. So, the effective speed upstream is (x - 3) km/h.
We can use the formula distance = speed × time to calculate the time taken for each leg of the journey.
For the downstream journey, the time taken is 5 km / (x + 3) km/h.
For the upstream journey, the time taken is 4 km / (x - 3) km/h.
Since the total time taken for the round trip is the sum of the times taken for the downstream and upstream journeys, we can set up the equation:
5 / (x + 3) + 4 / (x - 3) = total time
Now, let's solve this equation to find the value of x.
Calculation
To solve the equation, we need to find a common denominator and simplify the equation. Let's multiply both sides of the equation by (x + 3)(x - 3) to eliminate the denominators:5(x - 3) + 4(x + 3) = total time * (x + 3)(x - 3)
Simplifying the equation:
5x - 15 + 4x + 12 = total time * (x^2 - 9)
9x - 3 = total time * (x^2 - 9)
Expanding the right side of the equation:
9x - 3 = total time * x^2 - 9 * total time
Rearranging the equation:
total time * x^2 - 9 * total time - 9x + 3 = 0
This is a quadratic equation in terms of x. We can solve it using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
In this case, a = total time, b = -9, and c = 3.
Let's substitute these values into the quadratic formula and solve for x.
Solution
The speed of the boat is given by the positive root of the quadratic equation:x = (-(-9) ± √((-9)^2 - 4 * total time * 3)) / (2 * total time)
Substituting the value of total time as (5 / (x + 3) + 4 / (x - 3)):
x = (-(-9) ± √((-9)^2 - 4 * (5 / (x + 3) + 4 / (x - 3)) * 3)) / (2 * (5 / (x + 3) + 4 / (x - 3)))
Simplifying the equation further:
x = (9 ± √(81 - 12 * (5 / (x + 3) + 4 / (x - 3)))) / (10 / (x + 3) + 8 / (x - 3))
Now, we can solve this equation to find the value of x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili