
(2x+7)( 3x-4)(x+5) больше 0 решите неравенство методом интервалов


Ответы на вопрос

1)2x+7=0
2x=-7
x=-3,5
2)3x-4=0
3x=4
x=4/3
3)x+5=0
x=-5
Отметим эти точки на числовой прямой:
_____-_______(-5)____+______(-3,5)_______-____(4/3)_____+__
//////////////////////// ///////////////////
Ответ: x e (-5;-3,5) U (4/3; + беск.)



Solution to the Inequality (2x+7)(3x-4)(x+5) > 0 using Interval Method
To solve the inequality (2x+7)(3x-4)(x+5) > 0 using the interval method, we need to find the intervals where the expression is greater than zero.
Let's break down the problem step by step:
1. Find the critical points: - The critical points are the values of x where the expression (2x+7)(3x-4)(x+5) equals zero. To find these points, we set each factor equal to zero and solve for x: - 2x + 7 = 0 => x = -7/2 - 3x - 4 = 0 => x = 4/3 - x + 5 = 0 => x = -5
2. Create intervals: - We create intervals using the critical points and divide the number line into four regions: - Region 1: x < -7/2 - Region 2: -7/2 < x < 4/3 - Region 3: 4/3 < x < -5 - Region 4: x > -5
3. Test the intervals: - We choose a test point from each interval and substitute it into the expression (2x+7)(3x-4)(x+5) to determine whether the expression is positive or negative in that interval. - Let's choose the test points: - Test point for Region 1: x = -8 - Test point for Region 2: x = 0 - Test point for Region 3: x = 2 - Test point for Region 4: x = 6
4. Evaluate the expression: - We substitute the test points into the expression (2x+7)(3x-4)(x+5) and determine whether the expression is positive or negative: - For x = -8: (2(-8)+7)(3(-8)-4)(-8+5) = (-9)(-28)(-3) = -756 < 0 - For x = 0: (2(0)+7)(3(0)-4)(0+5) = (7)(-4)(5) = -140 < 0 - For x = 2: (2(2)+7)(3(2)-4)(2+5) = (11)(2)(7) = 154 > 0 - For x = 6: (2(6)+7)(3(6)-4)(6+5) = (19)(14)(11) = 2938 > 0
5. Determine the intervals where the expression is greater than zero: - From the evaluations above, we can see that the expression (2x+7)(3x-4)(x+5) is greater than zero in Region 3 and Region 4.
6. Final solution: - Therefore, the solution to the inequality (2x+7)(3x-4)(x+5) > 0 using the interval method is: - x ∈ (4/3, -5) U (-5, ∞).
Please let me know if you need any further clarification.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili