
Вопрос задан 27.05.2018 в 13:53.
Предмет Алгебра.
Спрашивает Лазукина Руслана.
Доказать равенствo, пользуясь определением границы числовой последовательности: 10 класс,
повышенная сложность. Тема - граница и непрерывность. Помогите, очень надо!

Ответы на вопрос

Отвечает Папукова Илона.
Если сможете осознать, то вот доказательство. По определению предела, 0 является пределом этой последовательности, если для любого ε>0 существует номер N (зависящий от ε), такой что для всех натуральных n>N будет выполнено неравенство 1/n!<ε. Для любого ε>0 возьмем N=[1/ε], где [...] - целая часть числа. Тогда, если n>N, то получаем
n≥N+1=[1/ε]+1>(1/ε-1)+1=1/ε, откуда 1/n!≤1/n<ε, что и требовалось.
Здесь воспользовались тем, что для любого х верно неравенство [x]>x-1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili