
1) |x+4|=|x-4|2) |x^2 -5x+6|> x^2 -5x+6


Ответы на вопрос

Ответ: 0
Ответ: 2<x<3



1) |x + 4| = |x - 4|
To solve this equation, we need to consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: (x + 4) is positive, (x - 4) is positive In this case, the equation becomes: x + 4 = x - 4
We can see that the variable x cancels out, leaving us with: 4 = -4
Since the equation is inconsistent, there are no solutions in this case.
Case 2: (x + 4) is negative, (x - 4) is negative In this case, the equation becomes: -(x + 4) = -(x - 4)
We can distribute the negative sign: -x - 4 = -x + 4
The variable x cancels out again, and we have: -4 = 4
Once again, the equation is inconsistent, and there are no solutions in this case.
Therefore, the given equation |x + 4| = |x - 4| has no solutions.
2) |x^2 - 5x + 6| > x^2 - 5x + 6
To solve this inequality, we need to consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: (x^2 - 5x + 6) is positive In this case, the inequality becomes: x^2 - 5x + 6 > x^2 - 5x + 6
The variable x cancels out, and we have: 0 > 0
Since the inequality is inconsistent, there are no solutions in this case.
Case 2: (x^2 - 5x + 6) is negative In this case, the inequality becomes: -(x^2 - 5x + 6) > x^2 - 5x + 6
We can distribute the negative sign: -x^2 + 5x - 6 > x^2 - 5x + 6
Combine like terms: -2x^2 + 10x - 12 > 0
To solve this quadratic inequality, we can find the roots of the corresponding quadratic equation: -2x^2 + 10x - 12 = 0
Factoring, we get: -2(x - 2)(x - 3) = 0
Setting each factor to zero, we find the critical points: x - 2 = 0 -> x = 2 x - 3 = 0 -> x = 3
We can now create a sign chart to determine the intervals that satisfy the inequality:
``` Interval | -2x^2 + 10x - 12 > 0 ------------------------------- (-∞, 2) | + (2, 3) | - (3, ∞) | + ```
From the sign chart, we can see that the inequality is satisfied when x is in the intervals (-∞, 2) and (3, ∞).
Therefore, the solution to the given inequality |x^2 - 5x + 6| > x^2 - 5x + 6 is x ∈ (-∞, 2) U (3, ∞).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili