Вопрос задан 12.05.2019 в 13:55. Предмет Алгебра. Спрашивает Куницкий Ваня.

1) |x+4|=|x-4|2) |x^2 -5x+6|> x^2 -5x+6

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шелдовицкая Дарья.
|x+4|=|x-4|
\\\
 \left \{ {{x+4=x-4} \atop {x+4=4-x}} \right. 
\\\
 \left \{ {{4 \neq -4} \atop {2x=0}} \right. 
\\\
x=0
Ответ: 0

|x^2 -5x+6|> x^2 -5x+6&#10;\\\&#10; \left \{ {{x^2 -5x+6> x^2 -5x+6} \atop {x^2 -5x+6<- x^2 +5x-6}} \right. &#10;\\\&#10; \left \{ {{0>0} \atop {2x^2 -10x+12<0}} \right. &#10;\\\&#10;x^2 -5x+6<0&#10;\\\&#10;D=25-24=1&#10;\\\&#10;x_1= \frac{5+1}{2}=3&#10;\\\&#10; x_2= \frac{5-1}{2}=2&#10;\\\&#10;x\in (2;3)
Ответ: 2<x<3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1) |x + 4| = |x - 4|

To solve this equation, we need to consider two cases: when the expression inside the absolute value is positive and when it is negative.

Case 1: (x + 4) is positive, (x - 4) is positive In this case, the equation becomes: x + 4 = x - 4

We can see that the variable x cancels out, leaving us with: 4 = -4

Since the equation is inconsistent, there are no solutions in this case.

Case 2: (x + 4) is negative, (x - 4) is negative In this case, the equation becomes: -(x + 4) = -(x - 4)

We can distribute the negative sign: -x - 4 = -x + 4

The variable x cancels out again, and we have: -4 = 4

Once again, the equation is inconsistent, and there are no solutions in this case.

Therefore, the given equation |x + 4| = |x - 4| has no solutions.

2) |x^2 - 5x + 6| > x^2 - 5x + 6

To solve this inequality, we need to consider two cases: when the expression inside the absolute value is positive and when it is negative.

Case 1: (x^2 - 5x + 6) is positive In this case, the inequality becomes: x^2 - 5x + 6 > x^2 - 5x + 6

The variable x cancels out, and we have: 0 > 0

Since the inequality is inconsistent, there are no solutions in this case.

Case 2: (x^2 - 5x + 6) is negative In this case, the inequality becomes: -(x^2 - 5x + 6) > x^2 - 5x + 6

We can distribute the negative sign: -x^2 + 5x - 6 > x^2 - 5x + 6

Combine like terms: -2x^2 + 10x - 12 > 0

To solve this quadratic inequality, we can find the roots of the corresponding quadratic equation: -2x^2 + 10x - 12 = 0

Factoring, we get: -2(x - 2)(x - 3) = 0

Setting each factor to zero, we find the critical points: x - 2 = 0 -> x = 2 x - 3 = 0 -> x = 3

We can now create a sign chart to determine the intervals that satisfy the inequality:

``` Interval | -2x^2 + 10x - 12 > 0 ------------------------------- (-∞, 2) | + (2, 3) | - (3, ∞) | + ```

From the sign chart, we can see that the inequality is satisfied when x is in the intervals (-∞, 2) and (3, ∞).

Therefore, the solution to the given inequality |x^2 - 5x + 6| > x^2 - 5x + 6 is x ∈ (-∞, 2) U (3, ∞).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос