
Вопрос задан 11.05.2019 в 08:48.
Предмет Алгебра.
Спрашивает Тихонов Никита.
Ешите уравнение:(x+3)^2=(x-5)^2. Если корней несколько в ответе запишите наибольший


Ответы на вопрос

Отвечает Нестеров Николай.
Раскрываем скобки,применяя формулы возведения в квадрат суммы и разности двух выражений, х^2+6x+9=x^2-10x+25 6x+10x=25-9 16x=16 x=1



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Уравнение: (x+3)^2=(x-5)^2
Давайте решим данное уравнение шаг за шагом.
1. Раскроем скобки в уравнении: (x+3)^2 = (x-5)^2 x^2 + 6x + 9 = x^2 - 10x + 25
2. Перенесем все члены на одну сторону уравнения: x^2 + 6x + 9 - x^2 + 10x - 25 = 0 16x - 16 = 0
3. Упростим уравнение: 16x - 16 = 0 16x = 16 x = 1
Таким образом, уравнение (x+3)^2=(x-5)^2 имеет один корень, равный x = 1.
Ответ: x = 1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili