
РЕШИТЕ ЗАДАЧУ С ПОМОЩЬЮ СИСТЕМЫ УРАВНЕНИЙ!! Путь длиной 240 км между пунктами A и B автомобиль
прошел с постоянной скоростью. Возвращаясь обратно, он прошел половину пути с той же скоростью, а затем увеличил скорость на 10км.ч. В результате на обратный путь было затрачено на 24 мин. меньше, чем на путь от A до B. С какой скоростью ехал автомобиль из пункта A в пункт B?

Ответы на вопрос




Problem Analysis
We are given that a car traveled a distance of 240 km between points A and B at a constant speed. On the return journey, the car traveled half the distance at the same speed and then increased its speed by 10 km/h. The total time taken for the return journey was 24 minutes less than the time taken for the journey from A to B. We need to find the speed at which the car traveled from point A to point B.Solution
Let's assume the speed of the car from A to B is x km/h.According to the problem, the car traveled half the distance (120 km) on the return journey at the same speed x km/h.
For the remaining half of the distance (also 120 km), the car increased its speed by 10 km/h. Therefore, the speed for this part of the journey is (x + 10) km/h.
To find the time taken for the journey from A to B, we can use the formula:
Time = Distance / Speed
For the journey from A to B, the time taken is:
Time_AB = 240 km / x km/h
For the return journey, the time taken is:
Time_BA = 120 km / x km/h + 120 km / (x + 10) km/h
We are given that the time taken for the return journey was 24 minutes (or 0.4 hours) less than the time taken for the journey from A to B. Therefore, we can write the equation:
Time_AB - Time_BA = 0.4 hours
Substituting the values of Time_AB and Time_BA, we get:
(240 / x) - (120 / x + 120 / (x + 10)) = 0.4
Now, we can solve this equation to find the value of x.
Calculation
Let's solve the equation to find the value of x.(240 / x) - (120 / x + 120 / (x + 10)) = 0.4
Multiplying through by x(x + 10) to eliminate the denominators:
240(x + 10) - 120x - 120(x + 10) = 0.4x(x + 10)
Simplifying the equation:
240x + 2400 - 120x - 1200 - 120x - 1200 = 0.4x^2 + 4x
0.4x^2 + 4x - 240x - 120x - 120x + 2400 - 1200 - 1200 = 0
0.4x^2 - 600x + 600 = 0
Dividing through by 0.4 to simplify the equation:
x^2 - 1500x + 1500 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
where a = 1, b = -1500, and c = 1500.
Substituting the values:
x = (-(-1500) ± √((-1500)^2 - 4 * 1 * 1500)) / (2 * 1)
Simplifying:
x = (1500 ± √(2250000 - 6000)) / 2
x = (1500 ± √(2244000)) / 2
x = (1500 ± 1498.57) / 2
Taking the positive value:
x = (1500 + 1498.57) / 2
x = 2998.57 / 2
x = 1499.285
Therefore, the speed at which the car traveled from point A to point B is approximately 1499.285 km/h.
Answer
The car traveled from point A to point B at a speed of approximately 1499.285 km/h.Note: The answer has been rounded to three decimal places for simplicity.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili