
sqrt^4(7+2sqrt5) * sqrt^4(7-2sqrt5))


Ответы на вопрос




Для решения данного выражения, мы должны использовать свойство квадратного корня:
√(a + b) = √a + √b
Теперь применим это свойство к нашему выражению:
√^4(7 + 2√5) * √^4(7 - 2√5)
= (√(7 + 2√5))^4 * (√(7 - 2√5))^4
Теперь воспользуемся свойством возведения в степень квадратного корня:
(√a)^n = a^(n/2)
= (7 + 2√5)^(4/2) * (7 - 2√5)^(4/2)
= (7 + 2√5)^2 * (7 - 2√5)^2
Далее, раскроем скобки:
(7 + 2√5)^2 = 49 + 2 * 7 * 2√5 + (2√5)^2
= 49 + 28√5 + 20
= 69 + 28√5
Аналогично:
(7 - 2√5)^2 = 49 - 2 * 7 * 2√5 + (2√5)^2
= 49 - 28√5 + 20
= 69 - 28√5
Теперь подставим значения обратно в исходное выражение:
(7 + 2√5)^2 * (7 - 2√5)^2
= (69 + 28√5) * (69 - 28√5)
= 69^2 - (28√5)^2
= 4761 - 784 * 5
= 4761 - 3920
= 841
Итак, результат выражения sqrt^4(7 + 2√5) * sqrt^4(7 - 2√5) равен 841.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili