
найти корни трехчлена: х²-11х+30; х²-21х+110; 4х²-64; 4х²-2х-0,75 помогите пожалуйста


Ответы на вопрос

x^2-11+30=0
D=(-11)^2-4*1*30 = 121-120 = 1
VD = V1 = 1
x1 = (11+1)/2 = 12/2=6
x2 = (11-1)/2 = 10/2 = 5
x^2-21x+110=0
D=(-21)^2-4*1*110=441 - 440 = 1
VD = 1
x1 = (21+1)/2 = 22/2=11
x2 = (21-1)/2 = 20/2 = 10
4x^2-64=0
4x^2=64
x^2=64:4
x^2=16 / :V
x=4 i x=-4
4x^2-2x-0,75=0
D=(-2)^2-4*4*(-0,75) = 4+12 = 16
VD=V16 = 4
x1 = (2+4)/2*4 = 6/8 = 3/4
x2 = (2-4)/2*4 = -2/8 = - 1/4
помогла?
поблагодарите!
отметьте как наилучшее и к Вам вернется 25% пкт отданных на решение етого задания



Finding the Roots of the Quadratic Equations
Let's find the roots of the given quadratic equations:
1. Equation: x² - 11x + 30
To find the roots, we can use the quadratic formula:
x = (-b ± √(b² - 4ac)) / (2a)
For this equation, the coefficients are: a = 1, b = -11, c = 30
Plugging these values into the quadratic formula, we get:
x = (-(-11) ± √((-11)² - 4 * 1 * 30)) / (2 * 1)
Simplifying further:
x = (11 ± √(121 - 120)) / 2
x = (11 ± √1) / 2
x = (11 ± 1) / 2
So, the roots of the equation x² - 11x + 30 are:
x₁ = (11 + 1) / 2 = 6
x₂ = (11 - 1) / 2 = 5
2. Equation: x² - 21x + 110
Using the same quadratic formula, we can find the roots of this equation:
For this equation, the coefficients are: a = 1, b = -21, c = 110
Plugging these values into the quadratic formula, we get:
x = (-(-21) ± √((-21)² - 4 * 1 * 110)) / (2 * 1)
Simplifying further:
x = (21 ± √(441 - 440)) / 2
x = (21 ± √1) / 2
x = (21 ± 1) / 2
So, the roots of the equation x² - 21x + 110 are:
x₁ = (21 + 1) / 2 = 11
x₂ = (21 - 1) / 2 = 10
3. Equation: 4x² - 64
This equation is already in the form of a quadratic equation. To find the roots, we can factor out the common factor of 4:
4x² - 64 = 4(x² - 16)
Now, we have a difference of squares:
4x² - 64 = 4(x - 4)(x + 4)
So, the roots of the equation 4x² - 64 are:
x₁ = 4
x₂ = -4
4. Equation: 4x² - 2x - 0.75
To find the roots of this equation, we can use the quadratic formula:
For this equation, the coefficients are: a = 4, b = -2, c = -0.75
Plugging these values into the quadratic formula, we get:
x = (-(-2) ± √((-2)² - 4 * 4 * (-0.75))) / (2 * 4)
Simplifying further:
x = (2 ± √(4 + 12)) / 8
x = (2 ± √16) / 8
x = (2 ± 4) / 8
So, the roots of the equation 4x² - 2x - 0.75 are:
x₁ = (2 + 4) / 8 = 0.75
x₂ = (2 - 4) / 8 = -0.25
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili