Вопрос задан 05.05.2019 в 00:10. Предмет Алгебра. Спрашивает Игонькина Дарья.

1/х+2 + 2/х(х-2) + 4/(х-2)(х+2) упростите пж

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вященко Артем.
11111111111111111111111
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения выражения 1/х + 2 + 2/х(х-2) + 4/(х-2)(х+2), мы можем сначала привести все слагаемые к общему знаменателю и затем объединить их в одну дробь.

Приведение к общему знаменателю

Для начала, найдем общий знаменатель для всех слагаемых. Общим знаменателем будет (х-2)(х+2).

Упрощение дробей

Теперь, приведем каждую дробь к общему знаменателю и сложим их вместе.

1/х = (х+2)/(х(х+2)) 2 = (2х(х-2))/(х(х+2)) 2/х(х-2) = 2/(х(х-2)) 4/(х-2)(х+2) = 4/((х-2)(х+2))

Сложение дробей

Теперь, сложим все дроби вместе:

(х+2)/(х(х+2)) + (2х(х-2))/(х(х+2)) + 2/(х(х-2)) + 4/((х-2)(х+2))

Общий знаменатель позволяет нам сложить числители:

(х+2 + 2х(х-2) + 2(х-2) + 4)/(х(х-2)(х+2))

Упрощение числителя

Теперь, упростим числитель:

(х+2 + 2х² - 4х + 2х - 4 + 4)/(х(х-2)(х+2))

Сгруппируем подобные слагаемые:

(2х² - х + 2)/(х(х-2)(х+2))

Ответ

Таким образом, упрощенное выражение равно (2х² - х + 2)/(х(х-2)(х+2)).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос