Вопрос задан 03.05.2019 в 19:58. Предмет Алгебра. Спрашивает Межерицкая Даша.

Найдите количество корней уравнения cos^2x-√3sinxcosx=1, принадлежащих отрезку Xc[0;п]Определить

количество корней уравнения sin^6x+cos^6x=7/16, если Хс[0;/2]
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Даниленко Максим.
1)cos²x-√3sinxcosx-cos²x-sin²x=0
sin²x+√3sinxcosx=0 /cos²x≠0
tg²x-√3tgx=0
tgx(tgx-√3)=0
tgx=0⇒x=πn
tgx=√3⇒x=π/3+πn
x=0;π/3;π∈[0;π] -3корня
2)(1-сos2x)³/8+(1+cos2x)³/8=7/16
1-3cos2x+3cos²2x-cos³2x+1+3cos2x+3cos²2x+cos³2x=7/2
2+6cos²2x=7/2
1+3cos²2x=7/4
3cos²2x=3/4
cos²2x=1/4
cos2x=-1/2⇒2x=+-2π/3+2πn⇒x=+-π/3+πn
cos2x=1/2⇒2x=π/3+2πn⇒x=+-π/6+πn
x=π/6;π/3∈[0;π/2]-2корня
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала рассмотрим уравнение cos^2x - √3sinxcosx = 1 на отрезке Xc[0;п].

Приведем данное уравнение к виду, содержащему только sinx или cosx: cos^2x - √3sinxcosx = 1 cos^

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос