Вопрос задан 02.05.2019 в 07:57.
Предмет Алгебра.
Спрашивает Гейдаров Камран.
F(x)=[tex] \sqrt{x} ( 2x^2-x ) Найти производную .
Ответы на вопрос
        Отвечает Райский Денис.
                
    
            Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
                
    Производная функции F(x) равна:
F'(x) = (1/2)*x^(-1/2) + 4x - 1
Для нахождения производной функции F(x) мы используем правило дифференцирования функций. Первым шагом дифференцируем каждый член функции по отдельности.
Для члена √x производная равна (1/2)*x^(-1/2) по правилу дифференцирования степенной функции.
Для члена 2x^2 производная равна 4x по правилу дифференцирования степенной функции.
Для члена -x производная равна -1 по правилу дифференцирования константы.
Таким образом, производная функции F(x) равна (1/2)*x^(-1/2) + 4x - 1.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
	- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			