Вопрос задан 27.04.2019 в 20:26. Предмет Алгебра. Спрашивает Ковшик Юля.

(x^3-y^3):(x^2+xy+y^2)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Исаев Ерасыл.
(x³-y³):(x²+xy+y²) =(х-у)(х²+ху+у²)/(х²+ху+у²)=х-у
выделенное сократили, числитель разложили по формуле разности кубов
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного выражения, мы можем использовать формулу для разности кубов:

(x^3 - y^3) = (x - y) * (x^2 + xy + y^2)

Таким образом, выражение (x^3 - y^3) делится на (x^2 + xy + y^2) равносильно делению (x - y) на (x^2 + xy + y^2).

Теперь рассмотрим это более подробно:

Выражение (x^3 - y^3) представляет собой разность кубов. Это означает, что мы можем записать его в виде произведения двух множителей: (x - y) и (x^2 + xy + y^2). Важно отметить, что формула разности кубов применима только в этом конкретном случае.

Таким образом, если мы хотим разделить (x^3 - y^3) на (x^2 + xy + y^2), мы можем просто сократить эти два множителя:

(x^3 - y^3) / (x^2 + xy + y^2) = (x - y) * (x^2 + xy + y^2) / (x^2 + xy + y^2)

Заметим, что (x^2 + xy + y^2) сокращается само с собой, и мы получаем:

(x^3 - y^3) / (x^2 + xy + y^2) = x - y

Таким образом, ответ на ваш вопрос: (x^3 - y^3) / (x^2 + xy + y^2) равно x - y.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос