
Помогите решить уравнения:a)x^2+16x-51=0б)x^2-14x-72=0Через дискриминант. Найдите корни
уравнения:а)x^3-49x=0б)7x^2=(2x+1)^2+3x^2-5Буду очень благодарна!!!!!

Ответы на вопрос

D=256+204=(2√115)²
х₁=(-16+2√115)/2=√115-8
х₂=(-16-2√115)/2=-√115-8
7x²-14x-72=0
D=196+2016=(2√553)²
х₁=(14+2√553)/14=1+√553/7
х₂=(14-2√553)/14=1-√553/7
Через дискриминант.
Найдите корни уравнения:
x³-49x=0
х(х²-49)=х(х+7)(х-7)=0 х₁=0 х₂=-7 х₃=7
7x²=(2x+1)²+3x²-5
7х²=4х²+4х+1+3х²-5
4х=4 х=1



Solving the equations using the discriminant:
To solve the given equations using the discriminant, we need to find the roots of the equations. The discriminant is a mathematical term used to determine the nature of the roots of a quadratic equation.
1. Equation: x^2 + 16x - 51 = 0 The quadratic equation is in the form of ax^2 + bx + c = 0, where a = 1, b = 16, and c = -51.
The discriminant (D) is calculated using the formula: D = b^2 - 4ac.
Substituting the values, we have: D = 16^2 - 4(1)(-51).
Calculating the discriminant, we get: D = 256 + 204 = 460.
The nature of the roots can be determined as follows: - If D > 0, the equation has two distinct real roots. - If D = 0, the equation has one real root (a repeated root). - If D < 0, the equation has no real roots (complex roots).
Since D = 460, which is greater than 0, the equation has two distinct real roots.
To find the roots, we can use the quadratic formula: x = (-b ± √D) / (2a).
Substituting the values, we have: x = (-16 ± √460) / (2 * 1).
Simplifying further, we get: x = (-16 ± √460) / 2.
The roots of the equation are: x = (-16 + √460) / 2 and x = (-16 - √460) / 2.
2. Equation: x^2 - 14x - 72 = 0 The quadratic equation is in the form of ax^2 + bx + c = 0, where a = 1, b = -14, and c = -72.
The discriminant (D) is calculated using the formula: D = b^2 - 4ac.
Substituting the values, we have: D = (-14)^2 - 4(1)(-72).
Calculating the discriminant, we get: D = 196 + 288 = 484.
Since D = 484, which is greater than 0, the equation has two distinct real roots.
Using the quadratic formula: x = (-b ± √D) / (2a).
Substituting the values, we have: x = (14 ± √484) / (2 * 1).
Simplifying further, we get: x = (14 ± √484) / 2.
The roots of the equation are: x = (14 + √484) / 2 and x = (14 - √484) / 2.
Solving the equations:
1. Equation: x^3 - 49x = 0 To solve this equation, we can factor out the common factor of x: x(x^2 - 49) = 0.
Now, we have two factors: x = 0 and x^2 - 49 = 0.
Solving the second factor, we get: x^2 - 49 = 0.
This equation can be factored as the difference of squares: (x - 7)(x + 7) = 0.
Therefore, the roots of the equation are: x = 0, x = 7, and x = -7.
2. Equation: 7x^2 = (2x + 1)^2 + 3x^2 - 5 Simplifying the equation, we have: 7x^2 = 4x^2 + 4x + 1 + 3x^2 - 5.
Combining like terms, we get: 7x^2 - 4x^2 - 3x^2 = 4x + 1 - 5.
Simplifying further, we have: 0 = 4x + 1 - 5.
Combining like terms, we get: 0 = 4x - 4.
Adding 4 to both sides of the equation, we have: 4 = 4x.
Dividing both sides of the equation by 4, we get: x = 1.
Therefore, the solution to the equation is x = 1.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili