Вопрос задан 26.04.2019 в 23:24. Предмет Алгебра. Спрашивает Дрёмин Роман.

Постройте прямые и укажите координаты их точки пересечения: x-y=1 и 3x+y=3помогите пожалуйста

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Соломенникова Катя.
Точка пересечения (1; 0)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Intersection Point of Two Lines

To find the intersection point of the two lines x - y = 1 and 3x + y = 3, we can solve the system of equations formed by these two lines.

Let's start by rewriting the equations in slope-intercept form (y = mx + b), where m represents the slope and b represents the y-intercept.

The equation x - y = 1 can be rewritten as y = x - 1.

The equation 3x + y = 3 can be rewritten as y = -3x + 3.

Now that we have both equations in slope-intercept form, we can set them equal to each other and solve for x:

x - 1 = -3x + 3

Adding 3x to both sides:

4x - 1 = 3

Adding 1 to both sides:

4x = 4

Dividing both sides by 4:

x = 1

Now that we have the value of x, we can substitute it back into either of the original equations to find the value of y. Let's substitute it into the equation y = x - 1:

y = 1 - 1

y = 0

Therefore, the intersection point of the two lines is (1, 0).

Answer:

The two lines x - y = 1 and 3x + y = 3 intersect at the point (1, 0).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос