
Вопрос задан 01.05.2018 в 23:10.
Предмет Алгебра.
Спрашивает Мережко Сергей.
Решить уравнение 2sin(x/2-п/6)=-1


Ответы на вопрос

Отвечает Ивандаев Анатолий.
Sin(П/6 + х/2) cos(П/6 - х/2) >= 0
1/2 * (sin((П/6 + х/2)+(П/6 - х/2)) + sin((П/6 + х/2)-(П/6 - х/2))) >= 0
1/2 * (sin(П/3) + sin(x)) >= 0
(1/2) * (√3)/2 + (1/2)*sin(x) >= 0
(√3)/4+(1/2)*sin(x) >= 0
(1/2)*sin(x) >=- (√3)/4
sin(x) >=- (√3)/2
-П/3 + 2пk ≤ X ≤ 4П/3 + 2пk, kЄZ
Ответ: XЄ[-П/3 + 2пk; 4П/3 + 2пk], kЄZ.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili