Вопрос задан 28.02.2019 в 13:16. Предмет Алгебра. Спрашивает Слепнёва Соня.

Тригонометрия tg(2x)tg(7x)=1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, давайте решим данное уравнение методом подстановки.

У нас дано уравнение tg(2x)tg(7x)=1. Заметим, что tg(2x) и tg(7x) — обратные функции, так как их произведение равно единице.

Предположим, что tg(2x) = t. Тогда уравнение tg(2x)tg(7x) = 1 примет вид t*tg(7x) = 1.

Применим тригонометрическую формулу для умножения тангенсов:

tg(A)tg(B) = (tg(A) + tg(B))/(1 - tg(A)tg(B)).

Подставим наше уравнение в данную формулу:

t*tg(7x) = (t + tg(7x))/(1 - t*tg(7x)).

Решим полученное уравнение:

t*tg(7x) - (t + tg(7x))/(1 - t*tg(7x)) = 0.

Умножим все члены уравнения на (1 - t*tg(7x)), чтобы избавиться от дробей:

t*tg(7x)*(1 - t*tg(7x)) - (t + tg(7x)) = 0.

Распишем полученное уравнение и сгруппируем слагаемые:

t*tg(7x) - t^2*tg^2(7x) - t - tg(7x) = 0.

Раскроем квадрат тангенса и приведем подобные члены:

t*tg(7x) - t^2*(1 - tg^2(7x)) - t - tg(7x) = 0.

Simplify the expression: t*tg(7x) - t^2 + t^2*tg^2(7x) - t - tg(7x) = 0.

Таким образом, мы получили квадратное уравнение относительно переменной t. Дальнейшее решение данного уравнения выполняется методами решения квадратного уравнения, например, путем применения квадратного трехчлена или метода дискриминантов.

Однако, так как исходное уравнение tg(2x)tg(7x) = 1 — тригонометрическое уравнение, мы должны решить его относительно переменной x. Для этого предлагается рассмотреть различные значения переменной t (корни решенного выше квадратного уравнения) и подставить их в исходное уравнение tg(2x)tg(7x) = 1. После этого получаем уравнение, которое можно будет решить относительно переменной x методом подстановки или другими соответствующими методами решения тригонометрических уравнений.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 2 Картыков Ярослав

Последние заданные вопросы в категории Алгебра

Задать вопрос