Вопрос задан 28.02.2019 в 11:43. Предмет Алгебра. Спрашивает Шатравка Леша.

Найдите корень уравнения: -3/7х=7*2/7 и -3/8х = -3*3/8

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стасенко Екатерина.
1)-3/7 *х= 7* 2/7
-3/7*х = 14/7
-3/7* х=2
 х=2 :(-3/7)= 2* (-7/3) 
 х=- 14/3 = -4 2/3
Проверим: -3/7*(-14/3) = 7 *2/7
3*14 / 7*3 = 14/7
14/7 =14/7
2=2
2)  - 3/8 *х = -3 *3/8
-3/8 *х = - 9/8
х= -9/8 : (-3/8)= 9*8/8*3
х= 3
Проверим: -3/8 * 3= -3 * 3/8
- 9/8 = - 9/8
 - 1 1/8 = - 1 1/8

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим каждое из уравнений поочередно.

1. Уравнение: \(-\frac{3}{7}x = \frac{7 \cdot 2}{7}\)

Сначала упростим правую сторону уравнения:

\(\frac{7 \cdot 2}{7} = \frac{14}{7} = 2\)

Теперь у нас есть уравнение:

\(-\frac{3}{7}x = 2\)

Чтобы избавиться от дроби в коэффициенте \(x\), умножим обе стороны уравнения на \(-\frac{7}{3}\) (обратное значение коэффициента):

\[ -\frac{7}{3} \cdot \left(-\frac{3}{7}x\right) = -\frac{7}{3} \cdot 2 \]

На левой стороне дроби сокращаются, и мы получаем:

\[x = -\frac{7}{3} \cdot 2 = -\frac{14}{3}\)

Таким образом, корень первого уравнения - \(-\frac{14}{3}\).

2. Уравнение: \(-\frac{3}{8}x = -\frac{3 \cdot 3}{8}\)

Сначала упростим правую сторону уравнения:

\(-\frac{3 \cdot 3}{8} = -\frac{9}{8}\)

Теперь у нас есть уравнение:

\(-\frac{3}{8}x = -\frac{9}{8}\)

Для избавления от дроби в коэффициенте \(x\) умножим обе стороны на \(-\frac{8}{3}\):

\[ -\frac{8}{3} \cdot \left(-\frac{3}{8}x\right) = -\frac{8}{3} \cdot \left(-\frac{9}{8}\right) \]

На левой стороне дроби сокращаются, и мы получаем:

\[x = -\frac{8}{3} \cdot \left(-\frac{9}{8}\right) = 3 \cdot 9 = 27\)

Таким образом, корень второго уравнения - 27.

Итак, корни уравнений:

1. \(-\frac{3}{7}x = 2\) имеет корень \(x = -\frac{14}{3}\). 2. \(-\frac{3}{8}x = -\frac{9}{8}\) имеет корень \(x = 27\).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос