Решите неравенства (x+3)²-2x(x-4)≤49
Ответы на вопрос
        
            Давайте решим данное неравенство поэтапно.
Неравенство, которое мы должны решить, выглядит следующим образом:
(x + 3)² - 2x(x - 4) ≤ 49
Для начала, раскроем скобки и упростим выражение:
x² + 6x + 9 - 2x² + 8x ≤ 49
Упростим дальше:
-x² + 14x - 40 ≤ 49
Теперь приведем неравенство к стандартному виду, где левая сторона равна нулю:
-x² + 14x - 40 - 49 ≤ 0
-x² + 14x - 89 ≤ 0
Далее, найдем корни квадратного уравнения, полученного из неравенства. Для этого можно воспользоваться формулой дискриминанта:
D = b² - 4ac
где a, b и c - коэффициенты квадратного уравнения:
a = -1 b = 14 c = -89
Теперь вычислим дискриминант:
D = 14² - 4(-1)(-89) D = 196 - 356 D = -160
Поскольку дискриминант D отрицательный, значит, уравнение не имеет реальных корней. Это означает, что неравенство не может быть выполнено при любых значениях x.
Таким образом, решение данного неравенства отсутствует.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			
Математика
 - 
			
Литература
 - 
			
Алгебра
 - 
			
Русский язык
 - 
			
Геометрия
 - 
			
Английский язык
 - 
			
Химия
 - 
			
Физика
 - 
			
Биология
 - 
			
Другие предметы
 - 
			
История
 - 
			
Обществознание
 - 
			
Окружающий мир
 - 
			
География
 - 
			
Українська мова
 - 
			
Информатика
 - 
			
Українська література
 - 
			
Қазақ тiлi
 - 
			
Экономика
 - 
			
Музыка
 - 
			
Право
 - 
			
Беларуская мова
 - 
			
Французский язык
 - 
			
Немецкий язык
 - 
			
МХК
 - 
			
ОБЖ
 - 
			
Психология
 - 
			
Физкультура и спорт
 - 
			
Астрономия
 - 
			
Кыргыз тили
 - 
			
Оʻzbek tili
 
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			