
Оцените периметр и площадь прямоугольника со сторонами а см и b см, если 4,4 меньше а меньше 4,5
6,3 меньше b меньше -4. очень надо,срочно!заранее спасибо!!!

Ответы на вопрос

P=(a+b)*2
4,4<a<4,5
6,3<b<-4
10,7<(a+b)<8,5 (складываем меньшии и складываем большии)
21,1<(a+b)*2<17 (и каждое число умнажаем на "2"))
ответ: 21,1<(a+b)*2<17
У меня на Пробном экзамене такая штука попалась))



Perimeter and Area of a Rectangle
To find the perimeter and area of a rectangle with sides of length 'a' cm and 'b' cm, we need to use the formulas for perimeter and area of a rectangle.
Perimeter of a Rectangle: The perimeter of a rectangle is the sum of all its side lengths. For a rectangle with sides 'a' cm and 'b' cm, the perimeter (P) is given by the formula: P = 2a + 2b.
Area of a Rectangle: The area of a rectangle is the product of its length and width. For a rectangle with sides 'a' cm and 'b' cm, the area (A) is given by the formula: A = a * b.
Now, let's calculate the perimeter and area of the given rectangle.
Given: - 4.4 < a < 4.5 - 6.3 < b < -4
Since the values of 'a' and 'b' are not specific, we cannot calculate the exact perimeter and area. However, we can provide a general formula using the given range of values.
Let's assume the minimum values for 'a' and 'b' to calculate the minimum perimeter and area, and assume the maximum values for 'a' and 'b' to calculate the maximum perimeter and area.
Minimum perimeter and area: - Minimum value of 'a' = 4.4 - Minimum value of 'b' = -4
Using the formulas mentioned above, we can calculate the minimum perimeter and area as follows:
Minimum Perimeter: P = 2a + 2b P = 2(4.4) + 2(-4) P = 8.8 - 8 P = 0.8 cm
Minimum Area: A = a * b A = 4.4 * -4 A = -17.6 cm^2
Maximum perimeter and area: - Maximum value of 'a' = 4.5 - Maximum value of 'b' = 6.3
Using the formulas mentioned above, we can calculate the maximum perimeter and area as follows:
Maximum Perimeter: P = 2a + 2b P = 2(4.5) + 2(6.3) P = 9 + 12.6 P = 21.6 cm
Maximum Area: A = a * b A = 4.5 * 6.3 A = 28.35 cm^2
Therefore, the perimeter of the rectangle can range from 0.8 cm to 21.6 cm, and the area of the rectangle can range from -17.6 cm^2 to 28.35 cm^2, depending on the specific values of 'a' and 'b' within the given range.
Please note that the negative area (-17.6 cm^2) is not physically meaningful, as area represents a measure of space and cannot be negative.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili