
Катер прошол 15км по течению реки и 4 км по озеру, затратив на весь путь 1 час.Найдите скорость
катера по течению реки,если скорость течения реки равна 4км/ч

Ответы на вопрос

2)19км:1ч=19(км/ч) скорость катера
3)19+4=23(км/ч)скорость по течению
4)19-4=15(км/ч)скорость против течения
Ответ: 15 км/ч и 23 км/ч.



Problem Analysis
We are given that a boat traveled 15 km downstream in a river and 4 km on a lake, taking a total of 1 hour for the entire journey. We need to find the speed of the boat downstream in the river, given that the speed of the river's current is 4 km/h.Solution
Let's assume the speed of the boat downstream in the river is x km/h.To solve this problem, we can use the formula: time = distance / speed.
The time taken to travel downstream in the river is given by: time1 = 15 km / (x + 4 km/h).
The time taken to travel on the lake is given by: time2 = 4 km / x km/h.
Since the total time taken for the entire journey is 1 hour, we can write the equation: time1 + time2 = 1 hour.
Substituting the values of time1 and time2, we get: 15 / (x + 4) + 4 / x = 1.
To solve this equation, we can multiply through by x(x + 4) to eliminate the denominators.
Simplifying the equation, we get: 15x + 60 + 4(x + 4) = x(x + 4).
Expanding and rearranging the equation, we get: x^2 - 7x - 76 = 0.
We can solve this quadratic equation to find the value of x.
Quadratic Equation Solution
Using the quadratic formula, we can find the values of x that satisfy the equation x^2 - 7x - 76 = 0.The quadratic formula is given by: x = (-b ± √(b^2 - 4ac)) / (2a).
For our equation, a = 1, b = -7, and c = -76.
Substituting these values into the quadratic formula, we get: x = (7 ± √(49 + 304)) / 2.
Simplifying further, we get: x = (7 ± √(353)) / 2.
Calculating the square root of 353, we get: √(353) ≈ 18.79.
Substituting this value into the equation, we get: x ≈ (7 ± 18.79) / 2.
Simplifying further, we get two possible values for x: x ≈ 12.89 or x ≈ -5.89.
Since the speed of the boat cannot be negative, we can discard the value of x ≈ -5.89.
Therefore, the speed of the boat downstream in the river is approximately 12.89 km/h.
Answer
The speed of the boat downstream in the river is approximately 12.89 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili