
Решить систему уравнений:


Ответы на вопрос

{4p+3q=-12
{p-4q=-41
{p=-41+4p
{4*(-41+4q)+3q=-12
{p=-41+4p
{-164+16q+3q=-12
{p=-41+4p
{19q=152
{p=-41+4p
{q=8
{p=-41+4*8
{q=8
{p=-9
{q=8



Solving the System of Equations
To solve the system of equations, we will use the given equations and apply algebraic methods to find the values of x and y.
The system of equations is as follows:
Equation 1: x - 5xy + 4y = 0 Equation 2: 2x - y = 31
To solve this system, we can use the method of substitution or elimination. Let's use the method of substitution.
Method of Substitution
Step 1: Solve Equation 2 for x in terms of y: From Equation 2, we have: 2x - y = 31 2x = y + 31 x = (y + 31)/2
Step 2: Substitute the value of x in Equation 1: x - 5xy + 4y = 0 ((y + 31)/2) - 5((y + 31)/2)y + 4y = 0
Simplifying the equation: (y + 31)/2 - 5(y + 31)/2 * y + 4y = 0 (y + 31 - 5(y + 31)y + 8y)/2 = 0 (y + 31 - 5y - 155y + 8y)/2 = 0 (y - 155y + 8y + 31 - 5y)/2 = 0 (-155y + 4y + 31)/2 = 0 (-151y + 31)/2 = 0
Step 3: Solve for y: -151y + 31 = 0 -151y = -31 y = -31/-151 y = 31/151
Step 4: Substitute the value of y back into Equation 2 to find x: 2x - y = 31 2x - (31/151) = 31 2x = 31 + (31/151) 2x = (31*151 + 31)/151 2x = (4681 + 31)/151 2x = 4712/151 x = (4712/151)/2 x = 4712/302 x = 78/151
Therefore, the solution to the system of equations is: x = 78/151 y = 31/151
The solution can also be written as a coordinate point: (78/151, 31/151).
Answer
The solution to the system of equations is x = 78/151 and y = 31/151.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili