
F'(x)=5x√x найти F(x)


Ответы на вопрос




To find the function F(x), given that its derivative F'(x) is equal to 5x√x, we can integrate F'(x) with respect to x. Integrating F'(x) will give us F(x) up to a constant of integration.
Let's break down the problem step by step:
Step 1: Start with the derivative F'(x) = 5x√x.
Step 2: To integrate 5x√x with respect to x, we can use the power rule for integration, which states that ∫x^n dx = (x^(n+1))/(n+1), where n is any real number except -1.
In this case, we have x as the base and √x as the exponent. Using the power rule, we can rewrite the expression as:
∫5x√x dx = 5∫(x^(3/2)) dx.
Step 3: Applying the power rule, we increase the exponent by 1 and divide by the new exponent:
= 5 * (2/5) * x^(5/2) + C, where C is the constant of integration.
Simplifying further, we get:
= 2x^(5/2) + C.
Therefore, the function F(x) = 2x^(5/2) + C, where C is an arbitrary constant.
That's the detailed solution for finding F(x) given F'(x) = 5x√x.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili