
Решить систему уравнений: x^2-y^2=21 x^2+2xy+y^2=49 Заранее спасибо!


Ответы на вопрос

x²+2xy+y²=49 (x+y)²=7² x+y=7 x+y=7 x+y=7
Складываем первое уравнение со вторым
x+x-y+y=3+7
2x=10
x=5 y=7-5=2



Solving the System of Equations
To solve the system of equations \(x^2 - y^2 = 21\) and \(x^2 + 2xy + y^2 = 49\), we can use the following steps:1. We can start by adding the two equations together to simplify the process.
2. After adding the equations, we can use the resulting equation to solve for one variable in terms of the other.
3. Once we have the value of one variable, we can substitute it back into one of the original equations to solve for the other variable.
Let's proceed with these steps to solve the given system of equations.
Solution Steps
1. Adding the Equations: - Adding the equations \(x^2 - y^2 = 21\) and \(x^2 + 2xy + y^2 = 49\), we get: \[2x^2 + 2xy = 70\]2. Solving for \(y\) in terms of \(x\): - We can solve for \(y\) in terms of \(x\) using the equation \(2x^2 + 2xy = 70\). - Factoring out \(2x\) from the left-hand side, we get: \[2x(x + y) = 70\] - Solving for \(y\), we have: \[y = \frac{70}{2x} - x\]
3. Substituting Back to Solve for \(x\) or \(y\): - We can substitute the expression for \(y\) back into one of the original equations to solve for \(x\) or \(y.
Conclusion
By following these steps, we can solve the given system of equations and find the values of \(x\) and \(y\).

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili