Вопрос задан 16.02.2019 в 22:32. Предмет Алгебра. Спрашивает Богомолов Андрей.

Корень из (2х+31) + корень 3 степени из (3х-116)=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает П'єнтак Лілія.
\sqrt{2x+31}+\sqrt[3]{3x-116}=0\\ \sqrt{2x+31}=-\sqrt[3]{3x-116}
Рассмотрим 2 функции:
f(x)=\sqrt{2x+31},\ D(f)=[-15,5;+\infty)
g(x)=-\sqrt[3]{3x-116},\ D(g)=(-\infty;+\infty).
Область существования корней уравнения - множество A=[-15,5;+\infty)
Функция f(x) возрастает на множестве А, функция g(x) убывает на А. 
f(-15,5)=\sqrt{2*(-15,5)+31}=0\\
g(-15,5)=-\sqrt[3]{3*(-15.5)-116}=\sqrt[3]{162.5}
Следовательно, на множестве А графики этих функций пересекаются в одной точке. Поэтому уравнение имеет на А единственный корень.
Находим подбором - х=-3.
Проверяем:
\sqrt{2*(-3)+31}=-\sqrt[3]{3*(-3)-116}\\ \sqrt{25}=-\sqrt[3]{-125}\\ 5=5
Равенство верное. Поэтому х=-3 - корень уравнения.
Ответ: -3.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этого уравнения, сначала найдем корень из выражения (2х+31) и корень 3 степени из выражения (3х-116):

Корень из (2х+31): √(2х+31)

Корень 3 степени из (3х-116): (3х-116)^(1/3)

Теперь подставим найденные корни в уравнение:

√(2х+31) + (3х-116)^(1/3) = 0

Это уравнение не имеет явного аналитического решения, поэтому для поиска корней потребуется использовать численные методы, такие как метод Ньютона или метод половинного деления.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос