Вопрос задан 16.02.2019 в 14:06. Предмет Алгебра. Спрашивает Зуйкова Анастасия.

1.Определение квадратного корня. Например: х2=64 Определение арифметического квадратного корня.

√81; √64; √36; √2500; √0,04; √(16/49); √(2 1/4)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедева Лиза.

√81=9  потому что 9²=81       
√64=8
√36=6
√2500=50
√0.04=0.2 потому что 0,2²=0,04
 \frac{16}{49} = \frac{ \sqrt{16}}{ \sqrt{46} }  = \frac{4}{7}
 \sqrt{2  \frac{1}{4}} = \sqrt{ \frac{9}{4} } = \frac{3}{2}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Определение квадратного корня

Квадратный корень числа \( a \) это такое число \( b \), что \( b^2 = a \). Это означает, что квадратный корень \( b \) из числа \( a \) такой, что при возведении \( b \) в квадрат мы получаем \( a \).

Арифметический квадратный корень

Арифметический квадратный корень числа \( a \), обозначается как \( \sqrt{a} \), это такое число \( b \), что \( b^2 = a \). Иными словами, арифметический квадратный корень числа \( a \) это число, при возведении которого в квадрат мы получаем \( a \).

Примеры вычисления квадратного корня

1. \( \sqrt{81} = 9 \), так как \( 9^2 = 81 \) 2. \( \sqrt{64} = 8 \), так как \( 8^2 = 64 \) 3. \( \sqrt{36} = 6 \), так как \( 6^2 = 36 \) 4. \( \sqrt{2500} = 50 \), так как \( 50^2 = 2500 \) 5. \( \sqrt{0.04} = 0.2 \), так как \( 0.2^2 = 0.04 \) 6. \( \sqrt{\frac{16}{49}} = \frac{4}{7} \), так как \( \left(\frac{4}{7}\right)^2 = \frac{16}{49} \) 7. \( \sqrt{2+\frac{1}{4}} = \sqrt{\frac{9}{4}} = \frac{3}{2} \), так как \( \left(\frac{3}{2}\right)^2 = 2 + \frac{1}{4} \)

Таким образом, квадратный корень числа \( a \), обозначаемый как \( \sqrt{a} \), это число \( b \), такое что \( b^2 = a \).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос