
Лінійні рівняння з двома змінними 4х+5у=12 8х+10у=22


Ответы на вопрос

8х+10у=22
Помножимо перше рівняння на (-2)
-8х-10у=-24
8х+10у=22
складемо обидва рівняння
0=-2
8х+10у=22
данна система рівняннь немає рішень



Для розв'язання системи лінійних рівнянь з двома змінними можна скористатися різними методами, такими як метод підстановки, метод визначників або метод віднімання.
У вашому випадку маємо систему рівнянь:
\[ \begin{cases} 4x + 5y = 12 \\ 8x + 10y = 22 \end{cases} \]
Одним з шляхів розв'язання є метод визначників. Для цього спочатку знайдемо визначники системи та замість x і y підставимо їх значення.
1. Знайдемо визначник основної матриці (D):
\[D = \begin{vmatrix} 4 & 5 \\ 8 & 10 \end{vmatrix} = (4 \cdot 10) - (8 \cdot 5) = 40 - 40 = 0\]
2. Знайдемо визначник матриці для x (Dx), замінюючи стовпеці під правою частиною рівнянь:
\[Dx = \begin{vmatrix} 12 & 5 \\ 22 & 10 \end{vmatrix} = (12 \cdot 10) - (22 \cdot 5) = 120 - 110 = 10\]
3. Знайдемо визначник матриці для y (Dy), також замінюючи стовпеці під правою частиною рівнянь:
\[Dy = \begin{vmatrix} 4 & 12 \\ 8 & 22 \end{vmatrix} = (4 \cdot 22) - (8 \cdot 12) = 88 - 96 = -8\]
Тепер знайдемо значення x та y:
\[x = \frac{Dx}{D} = \frac{10}{0} = \text{не визначено}\]
\[y = \frac{Dy}{D} = \frac{-8}{0} = \text{не визначено}\]
Отже, визначник основної матриці дорівнює нулю, що свідчить про те, що система рівнянь є лінійно залежною або має нескінченну кількість розв'язків. У цьому випадку, виглядає, що система не має єдиного розв'язку і можливо, її рівняння лінійно залежні або невизначені.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili