
Моторная лодка прошла от одной пристани до другой, расстояние между которыми по реке равно 16 км,
сделала стоянку на 40 мин и вернулась обратно через 11/3 ч после начала поездки. Найдите скорость течения реки, если известно, что скорость моторной лодки в стоячей воде равна 12 км/ч.

Ответы на вопрос




12-х скорость против течения
12+х скорость по течению
16/(12+х)+16/(12-х)=11/3-2/3=9/3=3
192-16х+192+16х=432-3х²
3х²=48
х²=16
х=4км/час скорость ткчения



Calculation of River Current Speed
To find the speed of the river current, we can use the formula:
Speed of the boat in still water = Speed of the boat relative to the ground + Speed of the river current
Let's denote the speed of the boat in still water as B and the speed of the river current as C.
Given information: - Distance between the two docks = 16 km - Boat made a stop for 40 minutes - Boat returned back after 11/3 hours (which is equivalent to 3 hours and 40 minutes) from the start of the trip - Speed of the boat in still water = 12 km/h
To solve this problem, we need to set up two equations based on the given information.
Equation 1: Distance = Speed × Time - For the first part of the trip (from one dock to the other), the boat traveled a distance of 16 km. - For the second part of the trip (from the second dock back to the first), the boat also traveled a distance of 16 km.
Equation 2: Time = Distance / Speed - The boat made a stop for 40 minutes, which is equal to 40/60 = 2/3 hours. - The boat returned back after 3 hours and 40 minutes, which is equal to 3 + 40/60 = 11/3 hours.
Let's solve these equations to find the speed of the river current.
Solution:
Using Equation 1, we can set up the following equation for the first part of the trip:
16 = (B + C) × T1 And for the second part of the trip:
16 = (B - C) × T2 Using Equation 2, we can set up the following equation for the stoppage time:
2/3 = 16 / (B + C) And for the return trip:
11/3 = 16 / (B - C) To solve these equations, we can eliminate the variables T1 and T2 by cross-multiplying Equation 1 and Equation 2:
16 × (B + C) = 16 × (B - C)
Simplifying, we get:
B + C = B - C
The C terms cancel out, leaving us with:
2C = 0
Since the coefficient of C is zero, this means that the speed of the river current (C) is zero. Therefore, there is no current in the river.
Answer:
The speed of the river current is 0 km/h.
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili