Вопрос задан 07.12.2023 в 17:20. Предмет Алгебра. Спрашивает Волк Алиса.

2.56. Приведите одночлен к стандартному виду: 1) (2a²) × ¼ а²2) ( -3d⁴)⁵ × 1/27 b³3)

(-5a³b²)²×(-0,2a²b)​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зиннатова Эвелина.

Ответ:

Смотри решение на фото


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для приведения данного одночлена к стандартному виду, мы должны упростить его, упрощая все числовые и алгебраические выражения.

Шаг 1: Упрощение числовых выражений

Начнем с упрощения числовых выражений в одночлене:

1) `(2a²) × ¼`: Умножим числа вместе: `2 × 1/4 = 1/2`. Получаем: `1/2a²`.

2) `(-3d⁴)⁵ × 1/27`: Возведем `-3d⁴` в степень 5: `(-3d⁴)⁵ = -3⁵d⁴⁵ = -243d⁴⁵`. Умножим числа вместе: `-243 × 1/27 = -9`. Получаем: `-9d⁴⁵`.

3) `(-5a³b²)² × (-0,2a²b)`: Возведем `(-5a³b²)` в квадрат: `(-5a³b²)² = (-5)²(a³)²(b²)² = 25a⁶b⁴`. Умножим числа вместе: `25 × -0,2 = -5`. Получаем: `-5a⁶b⁴ × (-0,2a²b) = -5 × -0,2 × a⁶ × a² × b⁴ × b = 1a⁸b⁵`.

Шаг 2: Сочетание всех упрощенных выражений

Теперь, когда мы упростили числовые выражения, мы можем объединить все упрощенные выражения в одно выражение:

`1/2a² + (-9d⁴⁵) + 1a⁸b⁵`

Таким образом, одночлен `2.56 + (2a²) × ¼ a²2 + (-3d⁴)⁵ × 1/27 b³3 + (-5a³b²)² × (-0,2a²b)` приведен к стандартному виду `1/2a² + (-9d⁴⁵) + 1a⁸b⁵`.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос