
Вопрос задан 28.07.2018 в 18:21.
Предмет Алгебра.
Спрашивает Воронин Влад.
1*3+2*4+3*5+4*6+5*7+.......+15*17=? Как это все упростить или какой-то формулой быстро сделать


Ответы на вопрос

Отвечает Фомичёва Валерия.
Попробуем угадать формулу S(n) = 1 * 3 + 2 * 4 + 3 * 5 + ... + n * (n + 2). Понятно, что сумма - многочлен, притом не более чем третьей степени.
Положим S(n) = an^3 + bn^2 + cn + d
S(1) = a + b + c + d = 3
S(2) = 8a + 4b + 2c + d = 3 + 8 = 11
S(3) = 27a + 9b + 3c + d = 11 + 15 = 26
S(4) = 64a + 16b + 4c + d = 26 + 24 = 50
a + b + c + d = 3
8a + 4b + 2c + d = 11
27a + 9b + 3c + d = 26
64a + 16b + 4c + d = 50
Вычитаем первое уравнение из оставшихся.
7a + 3b + c = 8
26a + 8b + 2c = 23
63a + 15b + 3c = 47
Вычитаем из второго уравнения удвоенное первое, а из третьего - утроенное.
12a + 2b = 7
42a + 6b = 23
6a + b = 7/2
7a + b = 23/6
Вычитаем из второго уравнения первого, получаем
a = 23/6 - 7/2 = 1/3
Тогда
b = 7/2 - 6a = 7/2 - 2 = 3/2
c = 8 - 7a - 3b = 8 - 7/3 - 9/2 = 7/6
d = 3 - a - b - c = 3 - 1/3 - 3/2 - 7/6 = 0
(?) S(n) = (2n^3 + 9n^2 + 7n)/6
Проверяем:
S(1) = (2 + 9 + 7)/6 = 3
S(2) = (16 + 36 + 14)/6 = 11
S(3) = (54 + 81 + 21)/6 = 26
S(4) = (128 + 144 + 28)/6 = 50
Вроде совпадает. Проверяем по индукции.
База уже проверена.
Переход: Пусть S(n) = (2n^3 + 9n^2 + 7n)/6. Найдем S(n+1).
S(n + 1) = (2n^3 + 9n^2 + 7n)/6 + (n + 1) * (n + 3) = (2n^3 + 9n^2 + 7n + 6n^2 + 24n + 18)/6 = (2(n^3 + 3n^2 + 3n + 1) + 9(n^2 + 2n + 1) + 7(n + 1))/6 = (2(n + 1)^3 + 9(n + 1)^2 + 7(n + 1))/6, чтд.
___________________________
Решение станет проще, если сразу вспомнить две формулы:
1 + 2 + ,,, + n = n(n + 1)/2
1 + 4 + ... + n^2 = n(n + 1)(2n + 1)/6
Тогда
1 * 3 + 2 * 4 + ... + n(n + 2) = (1 + 2 + ... + n^2) + 2(1 + 2 + ... + n) = n(n + 1) * [(2n + 1)/6 + 2 * 1/2] = n(n + 1)(2n + 7) / 6 - как и было получено ранее.
____________________________
S(15) = 15 * 16 * 37 / 6 = 5 * 8 * 37 = 40 * 37 = 1480
Положим S(n) = an^3 + bn^2 + cn + d
S(1) = a + b + c + d = 3
S(2) = 8a + 4b + 2c + d = 3 + 8 = 11
S(3) = 27a + 9b + 3c + d = 11 + 15 = 26
S(4) = 64a + 16b + 4c + d = 26 + 24 = 50
a + b + c + d = 3
8a + 4b + 2c + d = 11
27a + 9b + 3c + d = 26
64a + 16b + 4c + d = 50
Вычитаем первое уравнение из оставшихся.
7a + 3b + c = 8
26a + 8b + 2c = 23
63a + 15b + 3c = 47
Вычитаем из второго уравнения удвоенное первое, а из третьего - утроенное.
12a + 2b = 7
42a + 6b = 23
6a + b = 7/2
7a + b = 23/6
Вычитаем из второго уравнения первого, получаем
a = 23/6 - 7/2 = 1/3
Тогда
b = 7/2 - 6a = 7/2 - 2 = 3/2
c = 8 - 7a - 3b = 8 - 7/3 - 9/2 = 7/6
d = 3 - a - b - c = 3 - 1/3 - 3/2 - 7/6 = 0
(?) S(n) = (2n^3 + 9n^2 + 7n)/6
Проверяем:
S(1) = (2 + 9 + 7)/6 = 3
S(2) = (16 + 36 + 14)/6 = 11
S(3) = (54 + 81 + 21)/6 = 26
S(4) = (128 + 144 + 28)/6 = 50
Вроде совпадает. Проверяем по индукции.
База уже проверена.
Переход: Пусть S(n) = (2n^3 + 9n^2 + 7n)/6. Найдем S(n+1).
S(n + 1) = (2n^3 + 9n^2 + 7n)/6 + (n + 1) * (n + 3) = (2n^3 + 9n^2 + 7n + 6n^2 + 24n + 18)/6 = (2(n^3 + 3n^2 + 3n + 1) + 9(n^2 + 2n + 1) + 7(n + 1))/6 = (2(n + 1)^3 + 9(n + 1)^2 + 7(n + 1))/6, чтд.
___________________________
Решение станет проще, если сразу вспомнить две формулы:
1 + 2 + ,,, + n = n(n + 1)/2
1 + 4 + ... + n^2 = n(n + 1)(2n + 1)/6
Тогда
1 * 3 + 2 * 4 + ... + n(n + 2) = (1 + 2 + ... + n^2) + 2(1 + 2 + ... + n) = n(n + 1) * [(2n + 1)/6 + 2 * 1/2] = n(n + 1)(2n + 7) / 6 - как и было получено ранее.
____________________________
S(15) = 15 * 16 * 37 / 6 = 5 * 8 * 37 = 40 * 37 = 1480



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения данной задачи, нам нужно вычислить сумму следующего ряда: 1*3 + 2*4 + 3*5 + 4*6 + 5*7 + ... + 15*17.
Решение:
Мы можем заметить, что каждое слагаемое в ряду представляет собой произведение двух чисел, где первое число увеличивается на 1 с каждым слагаемым, а второе число увеличивается на 2 с каждым слагаемым.Мы можем упростить этот ряд, используя следующую формулу: Сумма = (первое число + последнее число) * (количество слагаемых / 2)
В данном случае, первое число равно 1, последнее число равно 15, а количество слагаемых равно 15.
Подставляя значения в формулу, получаем: Сумма = (1 + 15) * (15 / 2) = 16 * 7.5 = 120
Таким образом, сумма данного ряда равна 120.
Ответ:
Сумма ряда 1*3 + 2*4 + 3*5 + 4*6 + 5*7 + ... + 15*17 равна 120.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili