Вопрос задан 02.11.2023 в 04:56. Предмет Алгебра. Спрашивает Третьяков Саша.

. Найдите значение выражения: √2 cos п/4+ctg п/4​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кондратьев Ден.

Объяснение:

 \sqrt{2}  \times  \frac{ \sqrt{2} }{2}  + 1 = 1 + 1 = 2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти значение выражения √2 * cos(π/4) * ctg(π/4), мы начнем с вычисления значений косинуса (cos) и котангенса (ctg) угла π/4.

1. cos(π/4): Косинус угла π/4 равен 1/√2. Это может быть установлено из таблицы значений тригонометрических функций или с помощью геометрического представления угла π/4 в радианах.

2. ctg(π/4): Котангенс (ctg) угла π/4 также равен 1/√2. Он может быть вычислен как обратная тангенсу этого угла.

Теперь, мы знаем значения косинуса и котангенса угла π/4, и мы можем продолжить с вычислением выражения:

√2 * cos(π/4) * ctg(π/4) = √2 * (1/√2) * (1/√2)

Здесь √2 и √2 сокращаются, так как они являются обратно пропорциональными, и 1/√2 * 1/√2 равно 1/2.

Итак, значение выражения √2 * cos(π/4) * ctg(π/4) равно 1/2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос