Вопрос задан 31.10.2023 в 11:03. Предмет Алгебра. Спрашивает Лавров Макс.

X²-7x-18=0 дискримінант ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Веснич Виктория.

Ответ:

Д=(-7)²-4*1*(-18)=121

х1=

 \frac{7 +  \sqrt{121} }{2}  =  \frac{7 + 11}{2}  = 9

х2

 \frac{7 -  \sqrt{121} }{2}  =   \frac{7 - 11}{2}  =  - 2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання квадратного рівняння $$X^2-7x-18=0$$, потрібно знайти дискримінант $$D$$, який визначається за формулою $$D=b^2-4ac$$, де $$a$$, $$b$$ і $$c$$ - це коефіцієнти рівняння. У даному випадку $$a=1$$, $$b=-7$$ і $$c=-18$$. Підставляючи ці значення у формулу, отримуємо $$D=(-7)^2-4\cdot 1\cdot (-18)=121$$.

Дискримінант $$D$$ є позитивним, що означає, що рівняння має два дійсних кореня, які можна знайти за формулою $$x=\frac{-b\pm\sqrt{D}}{2a}$$. Підставляючи значення $$D=121$$, отримуємо $$x=\frac{-(-7)\pm\sqrt{121}}{2\cdot 1}=\frac{7\pm 11}{2}$$. Тоді два кореня рівняння будуть $$x_1=\frac{7+11}{2}=9$$ і $$x_2=\frac{7-11}{2}=-2$$. Це можна перевірити, підставивши ці значення у вихідне рівняння і переконавшись, що воно виконується.

Отже, дискримінант квадратного рівняння $$X^2-7x-18=0$$ дорівнює 121, а його коренями є 9 і -2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос