Вопрос задан 28.10.2023 в 04:35. Предмет Алгебра. Спрашивает Айтуган Касымхан.

Відомо, що а + b = 6, ab = 7. Знайдіть значення виразу: a³b²+a²b³

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Выбрык Константин.
Для знаходження значення виразу a³b² + a²b³ вам потрібно використовувати відомі значення a і b. Давайте знайдемо їх.

Ми знаємо, що:
a + b = 6
ab = 7

З цих рівнянь можна знайти значення a і b. Давайте розв'яжемо ці рівняння:

З рівняння a + b = 6 можна виразити одну зі змінних, наприклад, a:
a = 6 - b

Тепер підставимо це значення a в рівняння ab = 7:
(6 - b)b = 7

Розкриємо дужки та спростимо рівняння:
6b - b² = 7

Тепер перенесемо все на одну сторону рівняння та зведемо його до квадратного:
b² - 6b + 7 = 0

Це квадратне рівняння можна розв'язати, наприклад, за допомогою дискримінанту. Дискримінант D дорівнює:
D = (-6)² - 4(1)(7) = 36 - 28 = 8

Так як D > 0, то у нас є два різних корені для b. Ми можемо знайти їх, використовуючи квадратне рівняння. Розв'яжемо його:

b₁ = (-(-6) + √8) / (21) = (6 + √8) / 2 ≈ 4.82
b₂ = (-(-6) - √8) / (21) = (6 - √8) / 2 ≈ 1.18

Тепер, коли у нас є значення b, ми можемо знайти значення a за допомогою рівняння a = 6 - b:
a₁ ≈ 6 - 4.82 ≈ 1.18
a₂ ≈ 6 - 1.18 ≈ 4.82

Тепер ми знаємо значення a і b. Давайте обчислимо значення виразу a³b² + a²b³ для обох наборів значень a і b:

Для a = 1.18 і b = 4.82:
a³b² + a²b³ ≈ (1.18³)(4.82²) + (1.18²)(4.82³) ≈ 13.28

Для a = 4.82 і b = 1.18:
a³b² + a²b³ ≈ (4.82³)(1.18²) + (4.82²)(1.18³) ≈ 101.61

Отже, значення виразу a³b² + a²b³ може бути приблизно 13.28 або 101.61, в залежності від значень a і b.
0 0
Отвечает Пищаев Глеб.

Ответ:

Дано a + b = 6 та ab = 7. Щоб знайти значення виразу a³b² + a²b³, спочатку знайдемо значення a³ та b³. Знаємо, що (a + b)³ = a³ + 3a²b + 3ab² + b³. Підставимо дані з умови:

(6)³ = a³ + 3a²b + 3ab² + b³

216

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для початку, давайте виведемо значення a та b з першого рівняння. Знайдемо a:

a + b = 6

a = 6 - b

Тепер підставимо це значення в друге рівняння замість a:

(6 - b)b = 7

6b - b² = 7

b² - 6b + 7 = 0

Тепер ми можемо розв'язати це квадратне рівняння. Очевидно, що два числа, які мають таку суму 6 та добуток 7, це 1 та 7, тому ми маємо:

(b - 1)(b - 7) = 0

Звідси ми отримуємо два значення b: b = 1 та b = 7.

Тепер підставимо ці значення b назад у перше рівняння, щоб знайти значення a:

Якщо b = 1:
a + 1 = 6
a = 5

Якщо b = 7:
a + 7 = 6
a = -1

Тепер, коли ми знаємо значення a та b, ми можемо обчислити значення виразу a³b² + a²b³:

Якщо a = 5 та b = 1:
a³b² + a²b³ = (5)³(1)² + (5)²(1)³ = 125 + 25 = 150

Якщо a = -1 та b = 7:
a³b² + a²b³ = (-1)³(7)² + (-1)²(7)³ = -49 + 343 = 294

Таким чином, значення виразу a³b² + a²b³ при a = 5 та b = 1 - це 150, а при a = -1 та b = 7 - це 294.
0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос