
1) x^12 = 5 2) x^11 = 7


Ответы на вопрос

Ответ:
Завдання розв'язано..




To solve these equations, you can use logarithms. You want to isolate "x" in each equation. Here's how you can do it:
- x^12 = 5
Take the logarithm of both sides. You can use any base for the logarithm, but commonly used bases are natural logarithm (ln) and base 10 logarithm (log):
ln(x^12) = ln(5)
Apply the logarithm rule that allows you to bring the exponent down in front:
12 * ln(x) = ln(5)
Now, isolate ln(x) by dividing both sides by 12:
ln(x) = ln(5) / 12
To solve for "x," you can exponentiate both sides with the base "e" (since you used the natural logarithm, which has base "e"):
x = e^(ln(5) / 12)
x is approximately equal to:
x ≈ 1.0801
- x^11 = 7
Follow a similar procedure:
ln(x^11) = ln(7)
Use the logarithm rule to bring the exponent down:
11 * ln(x) = ln(7)
Isolate ln(x) by dividing both sides by 11:
ln(x) = ln(7) / 11
To solve for "x," exponentiate both sides with the base "e":
x = e^(ln(7) / 11)
x is approximately equal to:
x ≈ 1.1604


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili