Вопрос задан 24.10.2023 в 04:04. Предмет Алгебра. Спрашивает Сбродова Анастасия.

Знайдіть sin2a, якщо cos a= -0,8; п

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бақыт Раяна.

sin^2\alpha+cos^2\alpha=1\\sin^2\alpha=1-cos^2\alpha=1-(-0.8)^2=1-0.64=0.36

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження sin(2a), спочатку потрібно знайти значення sin(a). Ми вже знаємо, що cos(a) = -0.8.

Використовуючи ідентичність sin^2(a) + cos^2(a) = 1, ми можемо знайти sin(a):

sin^2(a) + (-0.8)^2 = 1 sin^2(a) + 0.64 = 1 sin^2(a) = 1 - 0.64 sin^2(a) = 0.36

Тепер ми знаємо, що sin^2(a) = 0.36.

Далі, ми можемо знайти sin(2a) за допомогою подвійного кута ідентичності:

sin(2a) = 2 * sin(a) * cos(a)

sin(2a) = 2 * √0.36 * (-0.8)

sin(2a) = 2 * 0.6 * (-0.8)

sin(2a) = -1.2

Отже, sin(2a) = -1.2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос