Вопрос задан 23.10.2023 в 03:17. Предмет Алгебра. Спрашивает Лис Соня.

Розвʼяжіть рівняння (х+4)(х+1)=х-(х-2)(2-х)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зайцева Кира.

(x+4)(x+1)=x-(x-2)(2-x)

Скорочуємо, помножуючи кожен член першої дужки, на кожен член другої дужки:

x^2+x+4x+4=x-(2x-x^2-4+2x)

Розкриваємо дужки, змінюючи знаки (оскільки стоїть мінус):

x^2+x+4x+4=x-2x+x^2+4-2x

Переносимо x в один бік, а числа в інший, змінюючи знаки:

x^2-x^2+x-x+4x+2x+2x=-4+4

Скорочуємо та приводимо подібні:

8x=0

x=0

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте розв'яжемо дане рівняння крок за кроком:

  1. Розгорнемо дужки з обох боків рівняння:

    (x + 4)(x + 1) = x - (x - 2)(2 - x)

    x^2 + 5x + 4 = x - (x^2 - 2x - 2x + 4)

  2. Розгорнемо дужки у виразі x - (x^2 - 2x - 2x + 4):

    x^2 + 5x + 4 = x - (x^2 - 4x + 4)

  3. Розподілімо знак мінус на другому доданку в дужках:

    x^2 + 5x + 4 = x - x^2 + 4x - 4

  4. Тепер об'єднаємо подібні члени на правій стороні рівняння:

    x^2 + 5x + 4 = (x - x^2) + (4x - 4)

  5. Простими операціями знайдемо суму подібних членів:

    x^2 + 5x + 4 = -x^2 + 4x

  6. Перенесемо всі члени рівняння на одну сторону, щоб рівняння було рівним нулю:

    x^2 + 5x + 4 + x^2 - 4x = 0

  7. Об'єднаємо подібні члени:

    2x^2 + x - 4 = 0

  8. Тепер ми маємо квадратне рівняння, яке можемо спростити. Для знаходження коренів можна використовувати квадратну формулу:

    x = (-b ± √(b^2 - 4ac)) / (2a)

    Де a = 2, b = 1 і c = -4. Підставимо ці значення в формулу:

    x = (-1 ± √(1^2 - 4 * 2 * (-4))) / (2 * 2)

    x = (-1 ± √(1 + 32)) / 4

    x = (-1 ± √33) / 4

Отже, корені рівняння (х+4)(х+1)=х-(х-2)(2-х) це:

x = (-1 + √33) / 4

x = (-1 - √33) / 4

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос