Вопрос задан 11.10.2023 в 14:56. Предмет Алгебра. Спрашивает Бородюк Андрей.

При каких а число √2a-6 принадлежит промежутку [-2;6]

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает На-Всегда Обречен.
Смотри ответ на листочке


0 0
Отвечает Мерендзак Яна.
-2 \leq \sqrt{2}a-6 \leq 6\\\\
4 \leq \sqrt{2}a \leq 12\\\\
\frac{4}{\sqrt{2}} \leq a \leq \frac{12}{\sqrt{2}}\\\\
2\sqrt{2} \leq a \leq 6\sqrt{2}\\\\
a \in [2\sqrt{2}; 6\sqrt{2}]
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы определить, при каких значениях "a" выражение √(2a - 6) принадлежит промежутку [-2, 6], нужно решить неравенство:

-2 ≤ √(2a - 6) ≤ 6

Для этого сначала рассмотрим два неравенства:

  1. -2 ≤ √(2a - 6)

  2. √(2a - 6) ≤ 6

  3. -2 ≤ √(2a - 6):

Для того, чтобы это неравенство выполнилось, "√(2a - 6)" должен быть больше или равен -2. Следовательно,

√(2a - 6) ≥ -2

Теперь возводим обе стороны неравенства в квадрат:

2a - 6 ≥ (-2)^2 2a - 6 ≥ 4

Прибавляем 6 к обеим сторонам:

2a ≥ 4 + 6 2a ≥ 10

Теперь делим обе стороны на 2:

a ≥ 10 / 2 a ≥ 5

  1. √(2a - 6) ≤ 6:

Для того, чтобы это неравенство выполнилось, "√(2a - 6)" должен быть меньше или равен 6. Следовательно,

√(2a - 6) ≤ 6

Теперь возводим обе стороны неравенства в квадрат:

2a - 6 ≤ 6^2 2a - 6 ≤ 36

Прибавляем 6 к обеим сторонам:

2a ≤ 36 + 6 2a ≤ 42

Теперь делим обе стороны на 2:

a ≤ 42 / 2 a ≤ 21

Таким образом, из первого неравенства мы получили, что a ≥ 5, а из второго неравенства, что a ≤ 21. Чтобы определить, при каких значениях "a" выражение √(2a - 6) принадлежит промежутку [-2, 6], нужно найти пересечение этих двух интервалов, что будет от 5 до 21:

5 ≤ a ≤ 21

Таким образом, при значениях "a" в интервале [5, 21], выражение √(2a - 6) будет принадлежать промежутку [-2, 6].

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос