Вопрос задан 08.10.2023 в 15:44. Предмет Алгебра. Спрашивает Стрисюк Віталіна.

Упростите m^2/4n-4m - n^2/2n-4m

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Азизов Тимур.

m^2-2n-m-4n^2=m^2-4n^2-(m+2n)=(m+2n)(m-2n-1)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для упрощения данного выражения представим каждый член дроби с общим знаменателем и затем объединим числители:

m24n4mn22n4m\frac{m^2}{4n-4m} - \frac{n^2}{2n-4m}

Найдем общий знаменатель, который будет 4n4m4n - 4m и преобразуем дроби к нему:

m24n4mn22n4m=m2(2n4m)(4n4m)(2n4m)n2(2n4m)(4n4m)(2n4m)\frac{m^2}{4n-4m} - \frac{n^2}{2n-4m} = \frac{m^2(2n-4m)}{(4n-4m)(2n-4m)} - \frac{n^2(2n-4m)}{(4n-4m)(2n-4m)}

Теперь объединим числители и упростим:

m2(2n4m)n2(2n4m)(4n4m)(2n4m)\frac{m^2(2n-4m) - n^2(2n-4m)}{(4n-4m)(2n-4m)}

2mn24m22n3+4mn2(4n4m)(2n4m)\frac{2mn^2 - 4m^2 - 2n^3 + 4mn^2}{(4n-4m)(2n-4m)}

4m22n3(4n4m)(2n4m)\frac{-4m^2 - 2n^3}{(4n-4m)(2n-4m)}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос